A single-component, light-assisted uncaging switch for endoproteolytic release

Lopez-Otin, C. & Bond, J. S. Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433–30437 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lichtenthaler, S. F., Lemberg, M. K. & Fluhrer, R. Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments. EMBO J. 37, e99456 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Solary, E., Eymin, B., Droin, N. & Haugg, M. Proteases, proteolysis, and apoptosis. Cell Biol. Toxicol. 14, 121–132 (1998).

Article  CAS  PubMed  Google Scholar 

Neurath, H. Proteolytic processing and physiological regulation. Trends Biochem. Sci. 14, 268–271 (1989).

Article  CAS  PubMed  Google Scholar 

Pahl, H. L. & Baeuerle, P. A. Control of gene expression by proteolysis. Curr. Opin. Cell Biol. 8, 340–347 (1996).

Article  CAS  PubMed  Google Scholar 

Chung, H. K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364, eaat6982 (2019).

Article  CAS  PubMed  Google Scholar 

Daringer, N. M., Dudek, R. M., Schwarz, K. A. & Leonard, J. N. Modular Extracellular Sensor Architecture for engineering mammalian cell-based devices. ACS Synth. Biol. 3, 892–902 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

Article  CAS  Google Scholar 

Chung, H. K. & Lin, M. Z. On the cutting edge: protease-based methods for sensing and controlling cell biology. Nat. Methods 17, 885–896 (2020).

Article  CAS  PubMed  Google Scholar 

Gray, D. C., Mahrus, S. & Wells, J. A. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142, 637–646 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rachel, B. K. et al. Tobacco etch virus protease mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. Des. Sel. 14, 993–1000 (2001).

Article  Google Scholar 

Kapust, R. B., Tözsér, J., Copeland, T. D. & Waugh, D. S. The P1′ specificity of tobacco etch virus protease. Biochem. Biophys. Res. Commun. 294, 949–955 (2002).

Article  CAS  PubMed  Google Scholar 

Wehr, M. C. et al. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 3, 985–993 (2006).

Article  CAS  PubMed  Google Scholar 

Baeumler, T. A., Ahmed, A. A. & Fulga, T. A. Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. Cell Rep. 20, 2639–2653 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolberg, T. B. et al. Computation-guided optimization of split protein systems. Nat. Chem. Biol. 17, 531–539 (2021).

Article  CAS  PubMed Central  Google Scholar 

Lee, D. et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nat. Methods 14, 495–503 (2017).

Article  CAS  Google Scholar 

Lee, D., Hyun, J. H., Jung, K., Hannan, P. & Kwon, H. B. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat. Biotechnol. 35, 858–863 (2017).

Article  CAS  Google Scholar 

Kim, M. W. et al. Time-gated detection of protein-protein interactions with transcriptional readout. eLife 6, e30233 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Ross, B., Mehta, S. & Zhang, J. Molecular tools for acute spatiotemporal manipulation of signal transduction. Curr. Opin. Chem. Biol. 34, 135–142 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shekhawat, S. S. & Ghosh, I. Split-protein systems: beyond binary protein-protein interactions. Curr. Opin. Chem. Biol. 15, 789–797 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voss, S., Klewer, L. & Wu, Y. W. Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr. Opin. Chem. Biol. 28, 194–201 (2015).

Article  CAS  PubMed  Google Scholar 

Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kramer, M. M., Lataster, L., Weber, W. & Radziwill, G. Optogenetic approaches for the spatiotemporal control of signal transduction pathways. Int. J. Mol. Sci. 22, 5300 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanchez, M. I., Nguyen, Q. A., Wang, W., Soltesz, I. & Ting, A. Y. Transcriptional readout of neuronal activity via an engineered Ca2+-activated protease. Proc. Natl Acad. Sci. USA 117, 33186–33196 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, X. et al. A single-component optogenetic system allows stringent switch of gene expression in yeast cells. ACS Synth. Biol. 7, 2045–2053 (2018).

Article  CAS  PubMed  Google Scholar 

Kaberniuk, A. A., Baloban, M., Monakhov, M. V., Shcherbakova, D. M. & Verkhusha, V. V. Single-component near-infrared optogenetic systems for gene transcription regulation. Nat. Commun. 12, 3859 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung, H. K. et al. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11, 713–720 (2015).

Article  CAS  PubMed Central  Google Scholar 

Jacobs, C. L., Badiee, R. K. & Lin, M. Z. StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins. Nat. Methods 15, 523–526 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, W. et al. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods 14, 391–394 (2017).

Article  PubMed  Google Scholar 

Lu, X. et al. Photocleavable proteins that undergo fast and efficient dissociation. Chem. Sci. 12, 9658–9672 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. USA 112, 112–117 (2015).

Article  CAS  PubMed  Google Scholar 

Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B. R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 (1988).

Article  CAS  PubMed  Google Scholar 

Seo, J. K., Choi, H. S. & Kim, K. H. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci. Rep. 6, 22436 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nallamsetty, S. et al. Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr. Purif. 38, 108–115 (2004).

Article  CAS  PubMed  Google Scholar 

Cella, F., Wroblewska, L., Weiss, R. & Siciliano, V. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat. Commun. 9, 4392 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Fernandez-Rodriguez, J. & Voigt, C. A. Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res. 44, 6493–6502 (2016).

Article  CAS  PubMed Central  Google Scholar 

Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif