Fructose-1,6-bisphosphatase 1 dephosphorylates and inhibits TERT for tumor suppression

Chakravarti, D., LaBella, K. A. & DePinho, R. A. Telomeres: history, health, and hallmarks of aging. Cell 184, 306–322 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blackburn, E. H. & Gall, J. G. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in tetrahymena. J. Mol. Biol. 120, 33–53 (1978).

Article  CAS  PubMed  Google Scholar 

Creighton, H. B. & McClintock, B. A correlation of cytological and genetical crossing-over in Zea mays. Proc. Natl Acad. Sci. USA 17, 492–497 (1931).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahin, E. & DePinho, R. A. Axis of ageing: telomeres, p53 and mitochondria. Nat. Rev. Mol. Cell Biol. 13, 397–404 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura, T. M. & Cech, T. R. Reversing time: origin of telomerase. Cell 92, 587–590 (1998).

Article  CAS  PubMed  Google Scholar 

Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev. 12, 1769–1774 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X. et al. Programmable base editing of mutated TERT promoter inhibits brain tumour growth. Nat. Cell Biol. 22, 282–288 (2020).

Article  CAS  PubMed  Google Scholar 

Jeong, S. A. et al. Akt-mediated phosphorylation increases the binding affinity of hTERT for importin α to promote nuclear translocation. J. Cell Sci. 128, 2287–2301 (2015).

Article  CAS  PubMed  Google Scholar 

Tejwani, G. A. Regulation of fructose-bisphosphatase activity. Adv. Enzymol. Relat. Areas Mol. Biol. 54, 121–194 (1983).

CAS  PubMed  Google Scholar 

Huangyang, P. et al. Fructose-1,6-bisphosphatase 2 inhibits sarcoma progression by restraining mitochondrial biogenesis. Cell Metab. 31, 174–188 (2020).

Article  CAS  PubMed  Google Scholar 

Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, F. et al. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat. Cell Biol. 22, 728–739 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Liao, K. et al. A feedback circuitry between polycomb signaling and fructose-1, 6-bisphosphatase enables hepatic and renal tumorigenesis. Cancer Res. 80, 675–688 (2020).

Article  CAS  PubMed  Google Scholar 

Wang, Z. et al. Fructose-1,6-bisphosphatase 1 functions as a protein phosphatase to dephosphorylate histone H3 and suppresses PPARα-regulated gene transcription and tumour growth. Nat. Cell Biol. 24, 1655–1665 (2022).

Article  CAS  PubMed  Google Scholar 

Li, H., Zhao, L. L., Funder, J. W. & Liu, J. P. Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J. Biol. Chem. 272, 16729–16732 (1997).

Article  CAS  PubMed  Google Scholar 

Denu, J. M., Stuckey, J. A., Saper, M. A. & Dixon, J. E. Form and function in protein dephosphorylation. Cell 87, 361–364 (1996).

Article  CAS  PubMed  Google Scholar 

Walton, K. M. & Dixon, J. E. Protein tyrosine phosphatases. Annu. Rev. Biochem. 62, 101–120 (1993).

Article  CAS  PubMed  Google Scholar 

Qian, X. et al. PTEN suppresses glycolysis by dephosphorylating and inhibiting autophosphorylated PGK1. Mol. Cell 76, 516–527 (2019).

Article  CAS  PubMed  Google Scholar 

Cesare, A. J. & Reddel, R. R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11, 319–330 (2010).

Article  CAS  PubMed  Google Scholar 

Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brosnan-Cashman, J. A. et al. ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner. PLoS ONE 13, e0204159 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Tusell, L., Pampalona, J., Soler, D., Frias, C. & Genesca, A. Different outcomes of telomere-dependent anaphase bridges. Biochem. Soc. Trans. 38, 1698–1703 (2010).

Article  CAS  PubMed  Google Scholar 

Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kon, E., Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L. & Peer, D. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023).

Article  CAS  PubMed  Google Scholar 

Kubiatowicz, L. J., Mohapatra, A., Krishnan, N., Fang, R. H. & Zhang, L. mRNA nanomedicine: design and recent applications. Exploration (Beijing) 2, 20210217 (2022).

Article  PubMed  Google Scholar 

Gu, L. et al. Fructose-1,6-bisphosphatase is a nonenzymatic safety valve that curtails AKT activation to prevent insulin hyperresponsiveness. Cell Metab. 35, 1009–1021 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, W. et al. Fructose-1,6-bisphosphatase 1 dephosphorylates IκBα and suppresses colorectal tumorigenesis. Cell Res. 33, 245–257 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, M. J., Dixon, J. E. & Manning, G. Genomics and evolution of protein phosphatases. Sci. Signal. 10, eaag1796 (2017).

Romero, P. et al. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 6, R2 (2005).

Article  PubMed  Google Scholar 

Xu, D. et al. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab. 33, 33–50 (2021).

Article  CAS  PubMed  Google Scholar 

Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bian, X. et al. Regulation of gene expression by glycolytic and gluconeogenic enzymes. Trends Cell Biol. 32, 786–799 (2022).

Article  CAS  PubMed  Google Scholar 

Lu, Z. & Hunter, T. Metabolic kinases moonlighting as protein kinases. Trends Biochem. Sci. 43, 301–310 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dasgupta, S. et al. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556, 249–254 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, D. et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature 580, 530–535 (2020).

Article  CAS  PubMed  Google Scholar 

Liu, R. et al. Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets. Mol. Cell 81, 2722–2735 (2021).

Article  CAS  PubMed  Google Scholar 

Guo, D. et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab. 34, 1312–1324 (2022).

Article  CAS  PubMed  Google Scholar 

Liu, G. M. & Zhang, Y. M. Targeting FBPase is an emerging novel approach for cancer therapy. Cancer Cell Int. 18, 36 (2018).

Article  PubMed 

Comments (0)

No login
gif