Nguyen, K. T., Holloway, M. P. & Altura, R. A. The CRM1 nuclear export protein in normal development and disease. Int. J. Biochem. Mol. Biol. 3, 137–151 (2012).
CAS PubMed PubMed Central Google Scholar
Camus, V., Miloudi, H., Taly, A., Sola, B. & Jardin, F. XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J. Hematol. Oncol. 10, 47 (2017).
Article PubMed PubMed Central Google Scholar
Kudo, N. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl Acad. Sci. USA 96, 9112–9117 (1999).
Article ADS CAS PubMed PubMed Central Google Scholar
Ferreira, B. I., Cautain, B., Grenho, I. & Link, W. Small molecule inhibitors of CRM1. Front. Pharm. 11, 625 (2020).
Chari, A. et al. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N. Engl. J. Med. 381, 727–738 (2019).
Article CAS PubMed Google Scholar
Adachi, Y. & Yanagida, M. Higher order chromosome structure is affected by cold-sensitive mutations in a Schizosaccharomyces pombe gene crm1+ which encodes a 115-kD protein preferentially localized in the nucleus and its periphery. J. Cell Biol. 108, 1195–1207 (1989).
Article CAS PubMed Google Scholar
Wang, W., Budhu, A., Forgues, M. & Wang, X. W. Temporal and spatial control of nucleophosmin by the RAN–CRM1 complex in centrosome duplication. Nat. Cell Biol. 7, 823–830 (2005).
Article CAS PubMed Google Scholar
Knauer, S. K., Bier, C., Habtemichael, N. & Stauber, R. H. The survivin–CRM1 interaction is essential for chromosomal passenger complex localization and function. EMBO Rep. 7, 1259–1265 (2006).
Article CAS PubMed PubMed Central Google Scholar
Oka, M. et al. Chromatin-bound CRM1 recruits SET-Nup214 and NPM1c onto HOX clusters causing aberrant HOX expression in leukemia cells. eLife 8, e46667 (2019).
Oka, M. et al. Chromatin-prebound Crm1 recruits Nup98–HoxA9 fusion to induce aberrant expression of Hox cluster genes. eLife 5, e09540 (2016).
Article PubMed PubMed Central Google Scholar
Sullivan, R. W. et al. 2-Chloro-4-(trifluoromethyl)pyrimidine-5-N-(3′,5′-bis(trifluoromethyl)phenyl)-carboxamide: a potent inhibitor of NF-κB- and AP-1-mediated gene expression identified using solution-phase combinatorial chemistry. J. Med. Chem. 41, 413–419 (1998).
Article CAS PubMed Google Scholar
Palanki, M. S. et al. The design and synthesis of novel orally active inhibitors of AP-1 and NF-κB mediated transcriptional activation. SAR of in vitro and in vivo studies. Bioorg. Med. Chem. Lett. 13, 4077–4080 (2003).
Article CAS PubMed Google Scholar
Ullman, K. S., Northrop, J. P., Verweij, C. L. & Crabtree, G. R. Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: the missing link. Annu. Rev. Immunol. 8, 421–452 (1990).
Article CAS PubMed Google Scholar
Serfling, E. et al. The role of NF-AT transcription factors in T cell activation and differentiation. Biochim. Biophys. Acta 1498, 1–18 (2000).
Article CAS PubMed Google Scholar
Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).
Article CAS PubMed Google Scholar
Macian, F., Lopez-Rodriguez, C. & Rao, A. Partners in transcription: NFAT and AP-1. Oncogene 20, 2476–2489 (2001).
Article CAS PubMed Google Scholar
Zeiser, R. & Blazar, B. R. Acute graft-versus-host disease—biologic process, prevention, and therapy. N. Engl. J. Med. 377, 2167–2179 (2017).
Article CAS PubMed PubMed Central Google Scholar
Zhang, M. & Zhang, S. T cells in fibrosis and fibrotic diseases. Front. Immunol. 11, 1142 (2020).
Article CAS PubMed PubMed Central Google Scholar
Patocka, J., Nepovimova, E., Kuca, K. & Wu, W. Cyclosporine A: chemistry and toxicity—a review. Curr. Med. Chem. 28, 3925–3934 (2021).
Article CAS PubMed Google Scholar
Morikawa, M., Shorthouse, R. A., Suto, M. J., Goldman, M. E. & Morris, R. E. A novel inhibitor of nuclear factor-κB and activator protein-1 transcription factors in T cells suppresses host-versus-graft alloreactivity in vivo. Transpl. Proc. 29, 1269–1270 (1997).
Gerlag, D. M. et al. The effect of a T cell-specific NF-κB inhibitor on in vitro cytokine production and collagen-induced arthritis. J. Immunol. 165, 1652–1658 (2000).
Article CAS PubMed Google Scholar
Fujimoto, H. et al. Inhibition of nuclear factor-κB in T cells suppresses lung fibrosis. Am. J. Respir. Crit. Care Med. 176, 1251–1260 (2007).
Article CAS PubMed Google Scholar
Palanki, M. S. et al. Inhibitors of NF-κB and AP-1 gene expression: SAR studies on the pyrimidine portion of 2-chloro-4-trifluoromethylpyrimidine-5-[N-(3′,5′-bis(trifluoromethyl)phenyl)carboxamide]. J. Med. Chem. 43, 3995–4004 (2000).
Article CAS PubMed Google Scholar
Goldman, M. E. et al. SP100030 is a novel T-cell-specific transcription factor inhibitor that possesses immunosuppressive activity in vivo. Transpl. Proc. 28, 3106–3109 (1996).
Huang, T. J., Adcock, I. M. & Chung, K. F. A novel transcription factor inhibitor, SP100030, inhibits cytokine gene expression, but not airway eosinophilia or hyperresponsiveness in sensitized and allergen-exposed rat. Br. J. Pharmacol. 134, 1029–1036 (2001).
Article CAS PubMed PubMed Central Google Scholar
Ross, S. H. & Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018).
Article CAS PubMed PubMed Central Google Scholar
Neggers, J. E. et al. Heterozygous mutation of cysteine528 in XPO1 is sufficient for resistance to selective inhibitors of nuclear export. Oncotarget 7, 68842–68850 (2016).
Article PubMed PubMed Central Google Scholar
Martin, J. G. et al. Chemoproteomic profiling of covalent XPO1 inhibitors to assess target engagement and selectivity. ChemBioChem 22, 2116–2123 (2021).
Article CAS PubMed Google Scholar
Niu, M., Chong, Y., Han, Y. & Liu, X. Novel reversible selective inhibitor of nuclear export shows that CRM1 is a target in colorectal cancer cells. Cancer Biol. Ther. 16, 1110–1118 (2015).
Article CAS PubMed PubMed Central Google Scholar
Freedy, A. M. & Liau, B. B. Discovering new biology with drug-resistance alleles. Nat. Chem. Biol. 17, 1219–1229 (2021).
Article CAS PubMed PubMed Central Google Scholar
Tai, Y. T. et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia 28, 155–165 (2014).
Article CAS PubMed Google Scholar
Thakar, K., Karaca, S., Port, S. A., Urlaub, H. & Kehlenbach, R. H. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol. Cell Proteom. 12, 664–678 (2013).
Dai, J., Sultan, S., Taylor, S. S. & Higgins, J. M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19, 472–488 (2005).
Article CAS PubMed PubMed Central Google Scholar
Tokuyama, Y., Horn, H. F., Kawamura, K., Tarapore, P. & Fukasawa, K. Specific phosphorylation of nucleophosmin on Thr199 by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J. Biol. Chem. 276, 21529–21537 (2001).
Article CAS PubMed Google Scholar
Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).
Article CAS PubMed Google Scholar
Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).
Article CAS PubMed Google Scholar
Schroeder, M. A. & DiPersio, J. F. Mouse models of graft-versus-host disease: advances and limitations. Dis. Model Mech. 4, 318–333 (2011).
Comments (0)