Biomolecular condensates create phospholipid-enriched microenvironments

Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

Article  CAS  PubMed  Google Scholar 

Oshidari, R. et al. DNA repair by Rad52 liquid droplets. Nat. Commun. 11, 695 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boronenkov, I. V., Loijens, J. C., Umeda, M. & Anderson, R. A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547–3560 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Payrastre, B. et al. A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J. Biol. Chem. 267, 5078–5084 (1992).

Article  CAS  PubMed  Google Scholar 

Choi, B. H., Chen, Y. & Dai, W. Chromatin PTEN is involved in DNA damage response partly through regulating Rad52 sumoylation. Cell Cycle 12, 3442–3447 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steinbach, N. et al. PTEN interacts with the transcription machinery on chromatin and regulates RNA polymerase II-mediated transcription. Nucleic Acids Res. 47, 5573–5586 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karlsson, T., Altankhuyag, A., Dobrovolska, O., Turcu, D. C. & Lewis, A. E. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem. J. 473, 2033–2047 (2016).

Article  CAS  PubMed  Google Scholar 

Davis, W. J., Lehmann, P. Z. & Li, W. Nuclear PI3K signaling in cell growth and tumorigenesis. Front. Cell Dev. Biol. 3, 24 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Albi, E., Mersel, M., Leray, C., Tomassoni, M. L. & Viola-Magni, M. P. Rat liver chromatin phospholipids. Lipids 29, 715–719 (1994).

Article  CAS  PubMed  Google Scholar 

Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

Article  CAS  PubMed  Google Scholar 

Johansson, H. O., Karlström, G., Tjerneld, F. & Haynes, C. A. Driving forces for phase separation and partitioning in aqueous two-phase systems. J. Chromatogr. B Biomed. Sci. Appl. 711, 3–17 (1998).

Article  CAS  PubMed  Google Scholar 

Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wollny, D. et al. Characterization of RNA content in individual phase-separated coacervate microdroplets. Nat. Commun. 13, 2626 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlson, C. R. et al. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol. Cell 80, 1092–1103 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perdikari, T. M. et al. SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. EMBO J. 39, e106478 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iserman, C. et al. Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Mol. Cell 80, 1078–1091 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cubuk, J. et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12, 1936 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, S. et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat. Commun. 12, 502 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 (2018).

Article  CAS  PubMed  Google Scholar 

Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chong, P. A., Vernon, R. M. & Forman-Kay, J. D. RGG/RG motif regions in RNA binding and phase separation. J. Mol. Biol. 430, 4650–4665 (2018).

Article  CAS  PubMed  Google Scholar 

Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 (2021).

Article  CAS  PubMed  Google Scholar 

Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weaver, R. & Riley, R. J. Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun. Mass Spectrom. 20, 2559–2564 (2006).

Article  CAS  PubMed  Google Scholar 

Wang, Z., Zhang, G. & Zhang, H. Protocol for analyzing protein liquid–liquid phase separation. Biophys. Rep. 5, 1–9 (2019).

Article  Google Scholar 

Barupal, D. K. & Fiehn, O. Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 7, 14567 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Cheung, H. Y. F. et al. Targeted phosphoinositides analysis using high-performance ion chromatography-coupled selected reaction monitoring mass spectrometry. J. Proteome Res. 20, 3114–3123 (2021).

Article  CAS 

留言 (0)

沒有登入
gif