Immunomodulation of Macrophages May Benefit Cutaneous Leishmaniasis Outcome

Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11:1–26. https://doi.org/10.1371/journal.pntd.0005600.

Reithlinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7:581–96.

Article  Google Scholar 

Christensen SM, Belew AT, El-Sayed NM, Tafuri WL, Silveira FT, Mosser DM. Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Negl Trop Dis. 2018;13:1–23.

CAS  Google Scholar 

Mcgwire BS, Satoskar AR. Leishmaniasis: clinical syndromes and treatment. QJM. 2014;107:7–14.

Article  CAS  PubMed  Google Scholar 

Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, Borges R, Rodriguez N. The epidemiology and control of leishmaniasis in Andean countries. Cad saúde pública / Ministério da Saúde, Fundação Oswaldo Cruz, Esc Nac Saúde Pública. 2000;16:925–50.

Bennis I, De Brouwere V, Belrhiti Z, Sahibi H, Boelaert M. Psychosocial burden of localised cutaneous leishmaniasis: a scoping review. BMC Public Health. 2018;18:1–12.

Article  Google Scholar 

Palić S, Beijnen JH, Dorlo TPC. An update on the clinical pharmacology of miltefosine in the treatment of leishmaniasis. Int J Antimicrob Agents. 2022;59:1–6.

Rogers ME. The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front Microbiol. 2012;3:1–13.

Article  CAS  Google Scholar 

Peters NC, Egen JG, Secundino N, Debrabant A, Kamhawi S, Lawyer P, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science (80- ). 2008;321:970–4.

Article  CAS  PubMed Central  Google Scholar 

Chagas AC, Oliveira F, Debrabant A, Valenzuela JG, Ribeiro JMC, Calvo E. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog. 2014;10(2):e1003923.

Article  PubMed  PubMed Central  Google Scholar 

Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28:691–703. https://doi.org/10.1016/j.meegid.2014.07.028

Passelli K, Billion O, Tacchini-Cottier F. The impact of neutrophil recruitment to the skin on the pathology induced by Leishmania infection. Front Immunol. 2021;12:1–12.

Article  Google Scholar 

Naderer T, McConville MJ. The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol. 2008;10:301–8.

Article  CAS  PubMed  Google Scholar 

Zer R, Yaroslavski I, Rosen L, Warburg A. Effect of sand fly saliva on Leishmania uptake by murine macrophages. Int J Parasitol. 2001;31:810–4.

Article  CAS  PubMed  Google Scholar 

Bee A, Culley FJ, Alkhalife IS, Bodman-Smith KB, Raynes JG, Bates PA. Transformation of Leishmania mexicana metacyclic promastigotes to amastigote-like forms mediated by binding of human C-reactive protein. Parasitology. 2001;122:521–9.

Article  CAS  PubMed  Google Scholar 

Sunter J, Gull K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol. 2017;7(8):170165.

Article  PubMed  PubMed Central  Google Scholar 

Dos Santos FC, Silveira Martins P, Demicheli C, Brochu C, Ouellette M, Frézard F. Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. Biometals. 2003;16:441–6.

Article  Google Scholar 

Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev. 2005;18:293–305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehwish S, Khan H, Rehman AU, Khan AU, Khan MA, Hayat O, et al. Natural compounds from plants controlling leishmanial growth via DNA damage and inhibiting trypanothione reductase and trypanothione synthetase: an in vitro and in silico approach. 3 Biotech. 2019;9:1–14.

Article  Google Scholar 

Rogers M, Kropf P, Choi BS, Dillon R, Podinovskaia M, Bates P, et al. Proteophosphoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog. 2009;5(8):e1000555.

Article  PubMed  PubMed Central  Google Scholar 

Crosby EJ, Goldschmidt MH, Wherry EJ, Scott P. Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection. PLoS Pathog. 2014;10(2):e1003970.

Article  PubMed  PubMed Central  Google Scholar 

Tomiotto-pellissier F, Taciane B, Assolini JP. Macrophage polarization in leishmaniasis : broadening horizons. 2018;9:1–12.

Stafford JL, Neumann NF, Belosevic M. Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol. 2002;28:187–248.

Article  PubMed  Google Scholar 

•• Loría-Cervera EN, Andrade-Narvaez F. The role of monocytes/macrophages in Leishmania infection: a glance at the human response. Acta Trop. 2020;207:105456. This article shows the huge importance of macrophages in the pathogenesis of cutaneous leishmaniasis. Still, highlight how these parasites subvert macrophages to maintain the infections.

Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16:581–92.

Article  CAS  PubMed  Google Scholar 

Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol. 2001;166:1141–7.

Article  CAS  PubMed  Google Scholar 

Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS, Locksley RM. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon γ-independent mechanism. J Exp Med. 1990;171:115–27.

Article  CAS  PubMed  Google Scholar 

Melby PC, Andrade-Narvaez FJ, Darnell BJ, Valencia-Pacheco G, Tryon VV, Palomo-Cetina A. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun. 1994;62:837–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costa DL, Cardoso TM, Queiroz A, Milanezi CM, Bacellar O, Carvalho EM, et al. Tr-1-like CD4+CD25- CD127-/lowFOXP3- cells are the main source of interleukin 10 in patients with cutaneous leishmaniasis due to Leishmania braziliensis. J Infect Dis. 2015;211:708–18.

Article  CAS  PubMed  Google Scholar 

Gonçalves de Albuquerque S da C, da Costa Oliveira CN, Vaitkevicius-Antão V, Silva AC, Luna CF, de Lorena VMB, et al. Study of association of the rs2275913 IL-17A single nucleotide polymorphism and susceptibility to cutaneous leishmaniasis caused by Leishmania braziliensis. Cytokine. 2019;123:154784. https://doi.org/10.1016/j.cyto.2019.154784.

Guimarães-Costa AB, Nascimento MTC, Froment GS, Soares RPP, Morgado FN, Conceição-Silva F, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A. 2009;106:6748–53.

Article  PubMed  PubMed Central  Google Scholar 

Ritter U, Frischknecht F, van Zandbergen G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 2009;25:505–10.

Article  CAS  PubMed  Google Scholar 

Manamperi NH, Oghumu S, Pathirana N, Silva VC De, Abeyewickreme W, Satoskar AR, et al. In situ immunopathological changes in cutaneous leishmaniasis due to Leishmania donovani. 2018;39:1–20.

Ji J, Sun J, Qi HAI, Soong L. Analysis of t helper cell responses during infection with Leishmania amazonensis. Trop Med. 2002;66:338–45.

Google Scholar 

Gurung P, Karki R, Vogel P, Watanabe M, Bix M, Lamkanfi M, et al. An NLRP3 inflammasome’ triggered Th2-biased adaptive immune response promotes leishmaniasis. J Clin Invest. 2015;125:1329–38.

Article  PubMed Central  Google Scholar 

Patil T, More V, Rane D, Mukherjee A, Suresh R, Patidar A, et al. Pro-inflammatory cytokine interleukin-1β (IL-1β) controls Leishmania infection. Cytokine. 2018;112:27–31. https://doi.org/10.1016/j.cyto.2018.06.033.

Kihel A, Hammi I, Darif D, Lemrani M, Riyad M, Guessous F, et al. The different faces of the NLRP3 inflammasome in cutaneous leishmaniasis: a review. Cytokine. 2021;147:155248. https://doi.org/10.1016/j.cyto.2020.155248.

Santos D, Campos TM, Saldanha M, Oliveira SC, Nascimento M, Zamboni DS, et al. IL-1β Production by intermediate monocytes is associated with immunopathology in cutaneous leishmaniasis. J Invest Dermatol. 2018;138:1107–15.

Article  CAS  PubMed  Google Scholar 

Louis L, Clark M, Wise MC, Glennie N, Andrea W, Broderick K, et al. Intradermal synthetic DNA vaccination generates Leishmania-specific T cells in the skin and protection against Leishmania major. Infect Immun. 2019;87:1–14.

Article  Google Scholar 

Tomiotto-Pellissier F, Miranda-Sapla MM, Silva TF, Bortoleti BT da S, Gonçalves MD, Concato VM, et al. Murine susceptibility to Leishmania amazonensis infection is influenced by arginase-1 and macrophages at the lesion site. Front Cell Infect Microbiol. 2021;11:1–14.

Basmaciyan L, Casanova M. Cell death in Leishmania. Parasite. 2019;26:71.

Article  PubMed  PubMed Central  Google Scholar 

Lakhal-Naouar I, Slike BM, Aronson NE, Marovich MA. The immunology of a healing response in cutaneous leishmaniasis treated with localized heat or systemic antimonial therapy. PLoS Negl Trop Dis. 2015;9:1–17.

Article  Google Scholar 

Brasil. Ministério da Saúde. Manual De Vigilância Da Leishmaniose Tegumentar. Man. vigilância da leishmaniose tegumentar. 2017.

Oliveira LF, Schubach AO, Martins MM, Passos SL, Oliveira RV, Marzochi MC, et al. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011;118:87–96.

Article  CAS  PubMed  Google Scholar 

Gonzalez-Fajardo L, Fernández OL, McMahon-Pratt D, Saravia NG. Ex vivo host and parasite response to antileishmanial drugs and immunomodulators. PLoS Negl Trop Dis. 2015;9(5):e0003820.

Article  PubMed  PubMed Central  Google Scholar 

de Saldanha RR, Martins-Papa MC, Sampaio RNR, Muniz-Junqueira MI. Meglumine antimonate treatment enhances phagocytosis and TNF-α production by monocytes in human cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 2012;106:596–603.

Article  PubMed  Google Scholar 

Macedo SRA, De Figueiredo Nicolete LD, Ferreira ADS, De Barros NB, Nicolete R. The pentavalent antimonial therapy against experimental Leishmania amazonensis infection is more effective under the inhibition of the NF-κB pathway. Int Immunopharmacol. 2015;28:554–9.

Article  CAS  PubMed  Google Scholar 

Muniz-Junqueira MI, de Paula-Coelho VN. Meglumine antimonate directly increases phagocytosis, superoxide anion and TNF-α production, but only via TNF-α it indirectly increases nitric oxide production by phagocytes of healthy individuals, in vitro. Int Immunopharmacol. 2008;8:1633–8.

Comments (0)

No login
gif