Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11:1–26. https://doi.org/10.1371/journal.pntd.0005600.
Reithlinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7:581–96.
Christensen SM, Belew AT, El-Sayed NM, Tafuri WL, Silveira FT, Mosser DM. Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Negl Trop Dis. 2018;13:1–23.
Mcgwire BS, Satoskar AR. Leishmaniasis: clinical syndromes and treatment. QJM. 2014;107:7–14.
Article CAS PubMed Google Scholar
Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, Borges R, Rodriguez N. The epidemiology and control of leishmaniasis in Andean countries. Cad saúde pública / Ministério da Saúde, Fundação Oswaldo Cruz, Esc Nac Saúde Pública. 2000;16:925–50.
Bennis I, De Brouwere V, Belrhiti Z, Sahibi H, Boelaert M. Psychosocial burden of localised cutaneous leishmaniasis: a scoping review. BMC Public Health. 2018;18:1–12.
Palić S, Beijnen JH, Dorlo TPC. An update on the clinical pharmacology of miltefosine in the treatment of leishmaniasis. Int J Antimicrob Agents. 2022;59:1–6.
Rogers ME. The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front Microbiol. 2012;3:1–13.
Peters NC, Egen JG, Secundino N, Debrabant A, Kamhawi S, Lawyer P, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science (80- ). 2008;321:970–4.
Article CAS PubMed Central Google Scholar
Chagas AC, Oliveira F, Debrabant A, Valenzuela JG, Ribeiro JMC, Calvo E. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog. 2014;10(2):e1003923.
Article PubMed PubMed Central Google Scholar
Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28:691–703. https://doi.org/10.1016/j.meegid.2014.07.028
Passelli K, Billion O, Tacchini-Cottier F. The impact of neutrophil recruitment to the skin on the pathology induced by Leishmania infection. Front Immunol. 2021;12:1–12.
Naderer T, McConville MJ. The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol. 2008;10:301–8.
Article CAS PubMed Google Scholar
Zer R, Yaroslavski I, Rosen L, Warburg A. Effect of sand fly saliva on Leishmania uptake by murine macrophages. Int J Parasitol. 2001;31:810–4.
Article CAS PubMed Google Scholar
Bee A, Culley FJ, Alkhalife IS, Bodman-Smith KB, Raynes JG, Bates PA. Transformation of Leishmania mexicana metacyclic promastigotes to amastigote-like forms mediated by binding of human C-reactive protein. Parasitology. 2001;122:521–9.
Article CAS PubMed Google Scholar
Sunter J, Gull K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol. 2017;7(8):170165.
Article PubMed PubMed Central Google Scholar
Dos Santos FC, Silveira Martins P, Demicheli C, Brochu C, Ouellette M, Frézard F. Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. Biometals. 2003;16:441–6.
Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev. 2005;18:293–305.
Article CAS PubMed PubMed Central Google Scholar
Mehwish S, Khan H, Rehman AU, Khan AU, Khan MA, Hayat O, et al. Natural compounds from plants controlling leishmanial growth via DNA damage and inhibiting trypanothione reductase and trypanothione synthetase: an in vitro and in silico approach. 3 Biotech. 2019;9:1–14.
Rogers M, Kropf P, Choi BS, Dillon R, Podinovskaia M, Bates P, et al. Proteophosphoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog. 2009;5(8):e1000555.
Article PubMed PubMed Central Google Scholar
Crosby EJ, Goldschmidt MH, Wherry EJ, Scott P. Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection. PLoS Pathog. 2014;10(2):e1003970.
Article PubMed PubMed Central Google Scholar
Tomiotto-pellissier F, Taciane B, Assolini JP. Macrophage polarization in leishmaniasis : broadening horizons. 2018;9:1–12.
Stafford JL, Neumann NF, Belosevic M. Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol. 2002;28:187–248.
•• Loría-Cervera EN, Andrade-Narvaez F. The role of monocytes/macrophages in Leishmania infection: a glance at the human response. Acta Trop. 2020;207:105456. This article shows the huge importance of macrophages in the pathogenesis of cutaneous leishmaniasis. Still, highlight how these parasites subvert macrophages to maintain the infections.
Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16:581–92.
Article CAS PubMed Google Scholar
Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol. 2001;166:1141–7.
Article CAS PubMed Google Scholar
Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS, Locksley RM. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon γ-independent mechanism. J Exp Med. 1990;171:115–27.
Article CAS PubMed Google Scholar
Melby PC, Andrade-Narvaez FJ, Darnell BJ, Valencia-Pacheco G, Tryon VV, Palomo-Cetina A. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun. 1994;62:837–42.
Article CAS PubMed PubMed Central Google Scholar
Costa DL, Cardoso TM, Queiroz A, Milanezi CM, Bacellar O, Carvalho EM, et al. Tr-1-like CD4+CD25- CD127-/lowFOXP3- cells are the main source of interleukin 10 in patients with cutaneous leishmaniasis due to Leishmania braziliensis. J Infect Dis. 2015;211:708–18.
Article CAS PubMed Google Scholar
Gonçalves de Albuquerque S da C, da Costa Oliveira CN, Vaitkevicius-Antão V, Silva AC, Luna CF, de Lorena VMB, et al. Study of association of the rs2275913 IL-17A single nucleotide polymorphism and susceptibility to cutaneous leishmaniasis caused by Leishmania braziliensis. Cytokine. 2019;123:154784. https://doi.org/10.1016/j.cyto.2019.154784.
Guimarães-Costa AB, Nascimento MTC, Froment GS, Soares RPP, Morgado FN, Conceição-Silva F, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A. 2009;106:6748–53.
Article PubMed PubMed Central Google Scholar
Ritter U, Frischknecht F, van Zandbergen G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 2009;25:505–10.
Article CAS PubMed Google Scholar
Manamperi NH, Oghumu S, Pathirana N, Silva VC De, Abeyewickreme W, Satoskar AR, et al. In situ immunopathological changes in cutaneous leishmaniasis due to Leishmania donovani. 2018;39:1–20.
Ji J, Sun J, Qi HAI, Soong L. Analysis of t helper cell responses during infection with Leishmania amazonensis. Trop Med. 2002;66:338–45.
Gurung P, Karki R, Vogel P, Watanabe M, Bix M, Lamkanfi M, et al. An NLRP3 inflammasome’ triggered Th2-biased adaptive immune response promotes leishmaniasis. J Clin Invest. 2015;125:1329–38.
Article PubMed Central Google Scholar
Patil T, More V, Rane D, Mukherjee A, Suresh R, Patidar A, et al. Pro-inflammatory cytokine interleukin-1β (IL-1β) controls Leishmania infection. Cytokine. 2018;112:27–31. https://doi.org/10.1016/j.cyto.2018.06.033.
Kihel A, Hammi I, Darif D, Lemrani M, Riyad M, Guessous F, et al. The different faces of the NLRP3 inflammasome in cutaneous leishmaniasis: a review. Cytokine. 2021;147:155248. https://doi.org/10.1016/j.cyto.2020.155248.
Santos D, Campos TM, Saldanha M, Oliveira SC, Nascimento M, Zamboni DS, et al. IL-1β Production by intermediate monocytes is associated with immunopathology in cutaneous leishmaniasis. J Invest Dermatol. 2018;138:1107–15.
Article CAS PubMed Google Scholar
Louis L, Clark M, Wise MC, Glennie N, Andrea W, Broderick K, et al. Intradermal synthetic DNA vaccination generates Leishmania-specific T cells in the skin and protection against Leishmania major. Infect Immun. 2019;87:1–14.
Tomiotto-Pellissier F, Miranda-Sapla MM, Silva TF, Bortoleti BT da S, Gonçalves MD, Concato VM, et al. Murine susceptibility to Leishmania amazonensis infection is influenced by arginase-1 and macrophages at the lesion site. Front Cell Infect Microbiol. 2021;11:1–14.
Basmaciyan L, Casanova M. Cell death in Leishmania. Parasite. 2019;26:71.
Article PubMed PubMed Central Google Scholar
Lakhal-Naouar I, Slike BM, Aronson NE, Marovich MA. The immunology of a healing response in cutaneous leishmaniasis treated with localized heat or systemic antimonial therapy. PLoS Negl Trop Dis. 2015;9:1–17.
Brasil. Ministério da Saúde. Manual De Vigilância Da Leishmaniose Tegumentar. Man. vigilância da leishmaniose tegumentar. 2017.
Oliveira LF, Schubach AO, Martins MM, Passos SL, Oliveira RV, Marzochi MC, et al. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011;118:87–96.
Article CAS PubMed Google Scholar
Gonzalez-Fajardo L, Fernández OL, McMahon-Pratt D, Saravia NG. Ex vivo host and parasite response to antileishmanial drugs and immunomodulators. PLoS Negl Trop Dis. 2015;9(5):e0003820.
Article PubMed PubMed Central Google Scholar
de Saldanha RR, Martins-Papa MC, Sampaio RNR, Muniz-Junqueira MI. Meglumine antimonate treatment enhances phagocytosis and TNF-α production by monocytes in human cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 2012;106:596–603.
Macedo SRA, De Figueiredo Nicolete LD, Ferreira ADS, De Barros NB, Nicolete R. The pentavalent antimonial therapy against experimental Leishmania amazonensis infection is more effective under the inhibition of the NF-κB pathway. Int Immunopharmacol. 2015;28:554–9.
Article CAS PubMed Google Scholar
Muniz-Junqueira MI, de Paula-Coelho VN. Meglumine antimonate directly increases phagocytosis, superoxide anion and TNF-α production, but only via TNF-α it indirectly increases nitric oxide production by phagocytes of healthy individuals, in vitro. Int Immunopharmacol. 2008;8:1633–8.
Comments (0)