Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia

Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science (New York, NY). 1992;256(5054):184–5. https://doi.org/10.1126/science.1566067.

Article  CAS  Google Scholar 

Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27(4):663–77. https://doi.org/10.1007/s10787-019-00580-x.

Article  PubMed  Google Scholar 

Ricciarelli R, Fedele E. The amyloid cascade hypothesis in alzheimer’s disease: it’s time to change our mind. Curr Neuropharmacol. 2017;15(6):926–35. https://doi.org/10.2174/1570159x15666170116143743.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217(2):459–72. https://doi.org/10.1083/jcb.201709069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases. Trends Mol Med. 2017;23(6):512–33. https://doi.org/10.1016/j.molmed.2017.03.008.

Article  CAS  PubMed  Google Scholar 

Perea JR, Bolós M, Avila J. Microglia in Alzheimer’s disease in the context of tau pathology. Biomolecules. 2020;10(10). https://doi.org/10.3390/biom10101439.

Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45. https://doi.org/10.1146/annurev.immunol.021908.132528.

Article  CAS  PubMed  Google Scholar 

Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53(2):1181–94. https://doi.org/10.1007/s12035-014-9070-5.

Article  CAS  PubMed  Google Scholar 

Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11:98. https://doi.org/10.1186/1742-2094-11-98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sankowski R, Böttcher C, Masuda T, Geirsdottir L, Sagar, Sindram E, et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat Neurosc. 2019;22(12):2098–110. https://doi.org/10.1038/s41593-019-0532-y.

Article  CAS  Google Scholar 

Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91. https://doi.org/10.1038/nn.4338.

Article  CAS  PubMed  Google Scholar 

Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, et al. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Res Rev. 2020;62: 101108. https://doi.org/10.1016/j.arr.2020.101108.

Article  CAS  PubMed  Google Scholar 

De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, Millan F, Salvador-Pascual A, García-Lucerga C, et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci. 2020;9(5):394–404. https://doi.org/10.1016/j.jshs.2020.01.004.

Article  PubMed  PubMed Central  Google Scholar 

Du Z, Li Y, Li J, Zhou C, Li F, Yang X. Physical activity can improve cognition in patients with Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Clin Interv Aging. 2018;13:1593–603. https://doi.org/10.2147/cia.S169565.

Article  PubMed  PubMed Central  Google Scholar 

Lu Y, Dong Y, Tucker D, Wang R, Ahmed ME, Brann D, et al. Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic alzheimer’s disease. J Alzheimers Dis. 2017;56(4):1469–84. https://doi.org/10.3233/jad-160869.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Y, Qiang Y. Mechanism of autonomic exercise improving cognitive function of alzheimer’s disease by regulating lncRNA SNHG14. Am J Alzheimers Dis Other Demen. 2021;36:15333175211027680. https://doi.org/10.1177/15333175211027681.

Article  PubMed  Google Scholar 

Soto I, Graham LC, Richter HJ, Simeone SN, Radell JE, Grabowska W, et al. APOE stabilization by exercise prevents aging neurovascular dysfunction and complement induction. PLoS Biol. 2015;13(10):e1002279. https://doi.org/10.1371/journal.pbio.1002279.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, et al. Running-induced systemic cathepsin b secretion is associated with memory function. Cell Metab. 2016;24(2):332–40. https://doi.org/10.1016/j.cmet.2016.05.025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science (New York, NY). 2018;361(6406). https://doi.org/10.1126/science.aan8821.

Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19(9):609–33. https://doi.org/10.1038/s41573-020-0072-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagit A, Hayward GC, MacPherson REK. Exercise and estrogen: common pathways in Alzheimer’s disease pathology. Am J Physiol Endocrinol Metab. 2021;321(1):E164–8. https://doi.org/10.1152/ajpendo.00008.2021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019;25(1):165–75. https://doi.org/10.1038/s41591-018-0275-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Miguel Z, Khoury N, Betley MJ, Lehallier B, Willoughby D, Olsson N, et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature. 2021;600(7889):494–9. https://doi.org/10.1038/s41586-021-04183-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horowitz AM, Fan X, Bieri G, Smith LK, Sanchez-Diaz CI, Schroer AB, et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science (New York, NY). 2020;369(6500):167–73. https://doi.org/10.1126/science.aaw2622.

Article  CAS  Google Scholar 

Wahl P, Zwingmann L, Manunzio C, Wolf J, Bloch W. Higher accuracy of the lactate minimum test compared to established threshold concepts to determine maximal lactate steady state in running. Int J Sports Med. 2018;39(7):541–8. https://doi.org/10.1055/s-0044-102131.

Article  PubMed  Google Scholar 

Lønbro S, Wiggins JM, Wittenborn T, Elming PB, Rice L, Pampo C, et al. Reliability of blood lactate as a measure of exercise intensity in different strains of mice during forced treadmill running. PLoS One. 2019;14(5):e0215584. https://doi.org/10.1371/journal.pone.0215584.

Article  PubMed  PubMed Central  Google Scholar 

Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558(Pt 1):5–30. https://doi.org/10.1113/jphysiol.2003.058701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x.

Article  CAS  PubMed  Google Scholar 

Coco M. The brain behaves as a muscle? Neurol Sci. 2017;38(10):1865–8. https://doi.org/10.1007/s10072-017-3014-6.

Article  PubMed  Google Scholar 

Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun. 2017;8:15557. https://doi.org/10.1038/ncomms15557.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El Hayek L, Khalifeh M, Zibara V, Abi Assaad R, Emmanuel N, Karnib N, et al. Lactate mediates the effects of exercise on learning and memory through sirt1-dependent activation of hippocampal Brain-Derived Neurotrophic Factor (BDNF). J Neurosci. 2019;39(13):2369–82. https://doi.org/10.1523/jneurosci.1661-18.2019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19(4):235–49. https://doi.org/10.1038/nrn.2018.19.

Article  CAS  PubMed  Google Scholar 

Wang Q, Hu Y, Wan J, Dong B, Sun J. Lactate: a novel signaling molecule in synaptic plasticity and drug addiction. BioEssays. 2019;41(8):e1900008. https://doi.org/10.1002/bies.201900008.

Article  PubMed  Google Scholar 

Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol. 1997;273(1 Pt 1):E207–13. https://doi.org/10.1152/ajpendo.1997.273.1.E207.

留言 (0)

沒有登入
gif