Using Technology to Deliver Cardiovascular Care in African Countries

Dicker D, Nguyen G, Abate D, et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1684–735.

Article  Google Scholar 

Kyu HH, Abate D, Abate KH, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1859–922.

Article  Google Scholar 

Murray CJL, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223–49.

Article  Google Scholar 

WHO methods and data sources for country-level causes of death 2000–2019.

World Health Organization: Global Status Report on Noncommunicable Diseases. https://iris.who.int/bitstream/handle/10665/148114/9789241564854_eng.pdf. Accessed 22 Sep 2023.

Yeates K, Lohfeld L, Sleeth J, Morales F, Rajkotia Y, Ogedegbe O. A global perspective on cardiovascular disease in vulnerable populations. Can J Cardiol. 2015;31:1081–93.

Article  PubMed  Google Scholar 

Cappuccio FP, Miller MA. Cardiovascular disease and hypertension in sub-Saharan Africa: burden, risk and interventions. Intern Emerg Med. 2016;11:299–305.

Article  PubMed  PubMed Central  Google Scholar 

Afrobarometer: Despite progress, basic infrastructure still a challenge in Africa.

Maloney KM, Bratcher A, Wilkerson R, Sullivan PS. Electronic and other new media technology interventions for HIV care and prevention: a systematic review. J Int AIDS Soc. 2020;23: e25439.

Article  PubMed  PubMed Central  Google Scholar 

Keesara S, Jonas A, Schulman K. Covid-19 and health care’s digital revolution. N Engl J Med. 2020;382: e82.

Article  CAS  PubMed  Google Scholar 

Whitelaw S, Mamas MA, Topol E, Spall HGCV. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit Heal. 2020;2:e435–40.

Article  Google Scholar 

GSMA: The Mobile Economy Sub-Saharan Africa 2022. According to this report, mobile connectivity will be essential in establishing the “new normal” as nations in sub-Saharan Africa and the rest of the world move into a post-pandemic economic recovery phase. The opportunity to use digital technology and services to boost productivity and efficiency in service delivery, reshape economies that are more robust to future shocks, and guarantee more inclusive socioeconomic development is a viable area of focus for authorities.

Mitchell M, Kan L. Digital technology and the future of health systems. Heal Syst Reform. 2019;5:113–20.

Article  Google Scholar 

Muiruri C, Manavalan P, Jazowski SA, Knettel BA, Vilme H, Zullig LL. Opportunities to leverage telehealth approaches along the hypertension control cascade in sub-Saharan Africa. Curr Hypertens Rep. 2019;21:75.

Article  PubMed  PubMed Central  Google Scholar 

Noubiap JJ, Millenaar D, Ojji D, Wafford QE, Ukena C, Böhm M, Sliwa K, Huffman MD, Mahfoud F. Fifty years of global cardiovascular research in Africa: a scientometric analysis, 1971 to 2021. J Am Hear Assoc. 2023;12: e027670.

Article  Google Scholar 

Coorey GM, Neubeck L, Mulley J, Redfern J. Effectiveness, acceptability and usefulness of mobile applications for cardiovascular disease self-management: systematic review with meta-synthesis of quantitative and qualitative data. Eur J Prev Cardiol. 2017;25:505–21.

Article  Google Scholar 

Abusin S. Using whatsapp smartphone application to monitor INR in patients on warfarin: first experience with 21 patients. Sudan Hear J. 2019;7(1):1-8.

Dele-Ojo BF, Ojo OD, Omopariola OA, Oseni TIA, Ogunmodede JA, Busari O, Amu EO, Adefioye A, Dele-Ojo BF. ORIGINAL: Smartphone Ownership and the Willingness to receive Mobile Health Services among Patients with Hypertension in Nigeria: West Afr J Med. 2023;40(1):84-89. The researchers found that all study participants used mobile phones, with nearly half of these being smart phones. There was nearly a 100% eagerness to receive and pay for mobile health information, preventive and treatment of hypertension, with mobile health being the sole predictor of this.

Torres G, Neophytou N, Fourie P, Buntting X, Constantinou D, Gradidge P-L. ‘I’m doing it for myself’: using a smartphone-based exercise service during the COVID-19 lockdown in the Faculty of Health Sciences, University of the Witwatersrand, South Africa. S Afr J Sports Med. 2021;33:v33i1a9053.

Stokes K, Oronti B, Cappuccio FP, Pecchia L. Use of technology to prevent, detect, manage and control hypertension in sub-Saharan Africa: a systematic review. BMJ Open. 2022;12: e058840.

Article  PubMed  PubMed Central  Google Scholar 

Leon N, Surender R, Bobrow K, Muller J, Farmer A. Improving treatment adherence for blood pressure lowering via mobile phone SMS-messages in South Africa: a qualitative evaluation of the SMS-text Adherence SuppoRt (StAR) trial. BMC Fam Pr. 2015;16:80.

Article  Google Scholar 

Bobrow K, Farmer AJ, Springer D et al. Mobile phone text messages to support treatment adherence in adults with high blood pressure (SMS-text adherence support [StAR]). Circulation. 2016;133:CIRCULATIONAHA.115.017530.

Jones E, Damasceno A, Ogola EN, Ojji DB, Dzudie A, Rayner B. PASCAR commentary on the International Society of Hypertension global guidelines 2020: relevance to sub-Saharan Africa. Cardiovasc J Afr. 2020;31:45–50.

Article  Google Scholar 

Freedman B, Hindricks G, Banerjee A, et al. World Heart Federation roadmap on atrial fibrillation – a 2020 update. Glob Hear. 2021;16:41.

Article  Google Scholar 

Mahmoud Z, Orji AA, Okoye CF, Ameh FO, Jamro-Comer E, Isah A, Ekele B, Akaba G, Ojji DB, Huffman MD. Facilitators and barriers to optimal home blood pressure management in patients with hypertensive disorders of pregnancy in a tertiary care facility in Abuja, Nigeria: a qualitative research study. BMC Heal Serv Res. 2023;23:954.

Article  Google Scholar 

Colvonen PJ, DeYoung PN, Bosompra NO, Owens RL. Limiting racial disparities and bias for wearable devices in health science research. Sleep. 2020;43(10):zsaa159

Cabanas AM, Fuentes-Guajardo M, Latorre K, León D, Martín-Escudero P. Skin pigmentation influence on pulse oximetry accuracy: a systematic review and bibliometric analysis. Sensors. 2022;22:3402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kyriacou PA, Charlton PH, Al-Halawani R, Shelley KH. Inaccuracy of pulse oximetry with dark skin pigmentation: clinical implications and need for improvement. Br J Anaesth. 2023;130:e33–6.

Article  PubMed  Google Scholar 

Adedinsewo D, Omole O, Oluleye O, Ajuyah I, Kusumoto F. Arrhythmia care in Africa. J Interv Card Electrophysiol. 2019;56:127–35.

Article  PubMed  Google Scholar 

Bonny A, Ngantcha M, Scholtz W, Chin A, Nel G, Anzouan-Kacou J-B, Karaye KM, Damasceno A, Crawford TC. Cardiac arrhythmias in Africa epidemiology, management challenges, and perspectives. J Am Coll Cardiol. 2019;73:100–9.

Article  PubMed  Google Scholar 

Evans GF, Shirk A, Muturi P, Soliman EZ. Feasibility of using mobile ECG recording technology to detect atrial fibrillation in low-resource settings. Glob Hear. 2017;12:285–9.

Article  Google Scholar 

Pitman BM, Chew S-H, Wong CX, Jaghoori A, Iwai S, Thomas G, Chew A, Sanders P, Lau DH. Performance of a mobile single-lead electrocardiogram technology for atrial fibrillation screening in a semirural African population: insights from “The Heart of Ethiopia: Focus on Atrial Fibrillation” (TEFF-AF) study. JMIR mHealth uHealth. 2021;9: e24470.

Article  PubMed  PubMed Central  Google Scholar 

Noubiap JJN, Jingi AM, Kengne AP. Local innovation for improving primary care cardiology in resource-limited African settings: an insight on the Cardio Pad(®) project in Cameroon. Cardiovasc Diagn Ther. 2014;4:397–400.

PubMed  PubMed Central  Google Scholar 

Adedinsewo DA, Morales-Lara AC, Dugan J, et al. Screening for peripartum cardiomyopathies using artificial intelligence in Nigeria (SPEC-AI Nigeria): Clinical trial rationale and design. Am Hear J. 2023;261:64–74.

Article  Google Scholar 

Dzudie A, Djomou A, Ba H, et al. MMM17-Cameroon, analysis and opportunities—sub-Saharan Africa. Eur Hear J Suppl. 2019;21:D31–3.

Article  Google Scholar 

Nsoesie EO, Oladeji O, Sengeh MD. Digital platforms and non-communicable diseases in sub-Saharan Africa. Lancet Digit Heal. 2020;2:e158–9.

Article  Google Scholar 

Lopez-Jimenez F, Attia Z, Arruda-Olson AM, et al. Artificial intelligence in cardiology: present and future. Mayo Clin Proc. 2020;95:1015–39.

Article  PubMed  Google Scholar 

Ahsan MM, Siddique Z. Machine learning-based heart disease diagnosis: a systematic literature review. Artif Intell Med. 2022;128: 102289.

Article  PubMed  Google Scholar 

Adedinsewo DA, Johnson PW, Douglass EJ et al. Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model. Eur Hear J - Digit Heal. 2021;2(4):586-96.

Karaye KM, Ishaq NA, Sa'idu H, Balarabe SA, Talle MA, Isa MS, Adamu UG, Umar H, Okolie HI, Shehu MN, Mohammed IY. Incidence, clinical characteristics, and risk factors of peripartum cardiomyopathy in Nigeria: results from the PEACE Registry Esc Hear Fail. 2020;7:236-244.

Davis MB, Arany Z, McNamara DM, Goland S, Elkayam U. Peripartum cardiomyopathy JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:207–21.

Article  CAS  PubMed  Google Scholar 

Mars M. Telemedicine and advances in urban and rural healthcare delivery in Africa. Prog Cardiovasc Dis. 2013;56:326–35.

Article  PubMed  Google Scholar 

Bediang G, Nganou-Gnindjio CN, Kamga Y,  Doualla F-CG, Bagayoko VO, Nko’o S. Public health and informatics. Stud Heal Technol Inform. 2021;281:615-619.

DeWyer A, Scheel A, Kamarembo J, et al. Establishment of a cardiac telehealth program to support cardiovascular diagnosis and care in a remote, resource-poor setting in Uganda. PLoS ONE. 2021;16: e0255918.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander T, Mullasari AS, Joseph G, et al. A system of care for patients with st-segment elevation myocardial infarction in India: the Tamil Nadu–ST-segment elevation myocardial infarction program. JAMA Cardiol. 2017;2:498.

Article  PubMed  PubMed Central  Google Scholar 

Nizeyimana E, Joseph C, Plastow N, Dawood G, Louw QA. A scoping review of feasibility, cost, access to rehabilitation services and implementation of telerehabilitation: implications for low- and middle-income countries. Digit Heal. 2022;8:20552076221131670.

Google Scholar 

Chitungo I, Mhango M, Dzobo M, Denhere K, Chimene M, Musuka G, Dzinamarira T. Towards virtual doctor consultations: a call for the scale-up of telemedicine in sub-Saharan Africa during COVID-19 lockdowns and beyond. Smart Heal. 2021;21: 100207.

Article  Google Scholar 

Pratt D, Suter B, Izabayo E, Olivier N, Wexler LF, Kerr H. The effect of virtual cardiovascular education in Rwanda: one year follow up for the University of Cincinnati Rwanda initiative. J Am Coll Cardiol. 2022;79:1879.

Article  Google Scholar 

Barteit S, Guzek D, Jahn A, Bärnighausen T, Jorge MM, Neuhann F. Evaluation of e-learning for medical education in low- and middle-income countries: a systematic review. Comput Educ. 2020;145: 103726.

Article  PubMed  PubMed Central  Google Scholar 

Barteit S, Jahn A, Banda SS, et al. E-learning for medical education in sub-Saharan Africa and low-resource settings: viewpoint. J Méd Internet Res. 2019;21: e12449.

Article  PubMed  PubMed Central  Google Scholar 

Timmers T, Janssen L, Kool RB, Kremer JA. Educating patients by providing timely information using smartphone and tablet apps: systematic review. J Méd Internet Res. 2020;22: e17342.

留言 (0)

沒有登入
gif