Parental genomic compatibility model: only certain diploid genotype combinations form allopolyploids

Anderson E. Hybridization of the habitat. Evolution. 1948;2:1–9. https://doi.org/10.1111/j.1558-5646.1948.tb02726.x.

Article  Google Scholar 

Arnold ML. Natural hybridization and evolution. Oxford: Oxford University Press; 1997. https://doi.org/10.1093/acprof:oso/9780195099751.001.0001.

Book  Google Scholar 

Bretagnolle F, Thompson JD. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol. 1985;129:1–22. https://doi.org/10.1111/j.1469-8137.1995.tb03005.x.

Article  Google Scholar 

Brownfield L, Köhler C. Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot. 2011;62:1659–68. https://doi.org/10.1093/jxb/erq371.

Article  CAS  PubMed  Google Scholar 

Buggs RJA, Soltis PS, Soltis DE. Does wide hybridization drive whole genome duplication? Mol Ecol. 2009;18:3334–9. https://doi.org/10.1111/j.1365-294X.2009.04285.x.

Article  PubMed  Google Scholar 

Clausen J, Hiesey WM, Keck DD. Experimental studies on the nature of species. Washington: Carnegie Institution; 1945. https://doi.org/10.2307/41760187.

Book  Google Scholar 

Devi Ch, Munshi AD, Behera TK, Choudhary H, Vinod GB, Saha P. Cross compatibility in interspecific hybridization of eggplant, Solanum melongena, with its wild relatives. Sci Hortic. 2015;193:353–8. https://doi.org/10.1016/j.scienta.2015.07.024.

Article  CAS  Google Scholar 

deWet JMJ. Origins of polyploids. In: Lewis WH, editor. Polyploidy. Basic life sciences, vol. 13. Boston: Springer; 1980. https://doi.org/10.1007/978-1-4613-3069.

Chapter  Google Scholar 

Fishman L, Sweigart AL. When two rights make a wrong: the evolutionary genetics of plant hybrid incompatibilities. Annu Rev Plant Biol. 2018;69:707–31. https://doi.org/10.1146/annurev-arplant-042817-040113.

Article  CAS  PubMed  Google Scholar 

Grant V. Cytogenetics of the hybrid Gilia millefoliata × achilleaefolia: I. Variations in meiosis and polyploidy rate as affected by nutritional and genetic conditions. Chromosoma. 1952;5:372–90. https://doi.org/10.1007/BF01271494.

Article  CAS  PubMed  Google Scholar 

Grant V. Plant speciation. 2nd ed. New York: Columbia University Press; 1981. https://doi.org/10.7312/gran92318.

Book  Google Scholar 

Harlan JR, deWet JMJ. On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev. 1975;41:361–90. https://doi.org/10.1007/BF02860830.

Article  Google Scholar 

Hogenboom NG. Incompatibility and incongruity: two different mechanisms for the non-functioning of intimate partner relationships. Proc R Soc B. 1975;188:361–7. https://doi.org/10.1098/rspb.1975.0025.

Article  Google Scholar 

Kuligowska K, Lütken H, Christensen B, Skovgaard I, Linde M, Winkelmann T, Müller R. Evaluation of reproductive barriers contributes to the development of novel interspecific hybrids in the Kalanchoë genus. BMC Plant Biol. 2015;15:1–15. https://doi.org/10.1186/s12870-014-0394-0.

Article  Google Scholar 

Lewis D. Incompatibility in Plants. Nature. 1944;153:575–8. https://doi.org/10.1038/153575a0.

Article  Google Scholar 

Mason AS, Nelson MN, Yan G, Cowling WA. Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol. 2011;11:1–13. https://doi.org/10.1186/1471-2229-11-103.

Article  CAS  Google Scholar 

McCoy T. The inheritance of 2n pollen formation in diploid alfalfa Medicago sativa. Can J Genet Cytol. 1982;24:315–23. https://doi.org/10.1139/g82-033.

Article  Google Scholar 

Mok D, Peloquin S. Three mechanisms of 2n pollen formation in diploid potatoes. Can J Genet Cytol. 1975;17:217–25. https://doi.org/10.1038/hdy.1975.100.

Article  Google Scholar 

Myers JR, Gritton ET, Struckmeyer BE. Production of 2n pollen and further characterization of the Calyx carpellaris (cc) trait in the Pea 1. Crop Sci. 1984;24:1063–9. https://doi.org/10.2135/cropsci1984.0011183X002400060014x.

Article  Google Scholar 

Nimura M, Kato J, Mii M, Morioka K. Unilateral compatibility and genotypic difference in crossability in interspecific hybridization between Dianthus caryophyllus L. and D. japonicus Thunb. Theor Appl Genet. 2003;106:1164–70. https://doi.org/10.1007/s00122-002-1181-0.

Article  CAS  PubMed  Google Scholar 

Novak SJ, Soltis DS, Soltis PS. Ownbey’s Tragopogons: Forty years later. Am J Bot. 1991;78:1586–600.

Article  Google Scholar 

Ocampo J, Arias JC, Urrea R. Interspecific hybridization between cultivated and wild species of genus Passiflora L. Euphytica. 2016;209:395–408. https://doi.org/10.1007/s10681-016-1647-9.

Article  Google Scholar 

Ownbey M. Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot. 1950;37:487–99. https://doi.org/10.2307/2438023.

Article  Google Scholar 

Ownbey M, McCollum GD. Cytoplasmic inheritance and reciprocal amphiploidy in Tragopogon. Am J Bot. 1953;40:788–96. https://doi.org/10.2307/2444984.

Article  Google Scholar 

Parrott W, Smith R. Recurrent selection for 2n pollen formation in red clover 1. Crop Sci. 1986;26:1132–5. https://doi.org/10.2135/cropsci1986.0011183X002600060009x.

Article  Google Scholar 

Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 1998;29:467–501. https://doi.org/10.1146/annurev.ecolsys.29.1.467.

Article  Google Scholar 

Rieseberg LH, Willis JH. Plant speciation. Science. 2007;317:910–4. https://doi.org/10.1126/science.1137729.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soltis DE, Soltis PS. Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol. 1999;14:349–51. https://doi.org/10.1016/S0169-5347(99)01638-9.

Article  Google Scholar 

Soltis DE, Buggs RJA, Barbazuk WB, Chamala S, Chester M, Gallagher JP, Schnable PS, Soltis PS. Rapid and repeated evolution in the early stages of polyploidy: genomic and cytogenetic studies of recent polyploidy in Tragopogon. In: Soltis PS, Soltis DE, editors. Polyploidy. Berlin: Springer; 2012. https://doi.org/10.1007/978-3-642-31442-1_14.

Chapter  Google Scholar 

Soltis DE, Mavrodiev EV, Brukhin V, Roalson EH, Albach DC, Godden GT, Alexeev YE, Gitzendanner MA, Freeman CC, Suárez-Santiago VN, Soltis PS. Tragopogon pratensis: multiple introductions to North America, circumscription, and the formation of the allotetraploid T. miscellus. Taxon. 2023;72:848–61. https://doi.org/10.1002/tax.12936.

Article  Google Scholar 

Soltis DE, Mavrodiev EV, Gitzendanner MA, Alexeev YE, Godden GT, Soltis PS. Tragopogon dubius: multiple introductions to North America and the formation of the New World tetraploids. Taxon. 2022;71:1287–98. https://doi.org/10.1002/tax.12743.

Article  Google Scholar 

Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev EV. Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Lin Soc. 2004;82:485–501. https://doi.org/10.1111/j.1095-8312.2004.00335.x.

Article  Google Scholar 

Stebbins GL. Variation and evolution in plants. New York: Columbia University Press; 1950. https://doi.org/10.7312/steb94536-007.

Book  Google Scholar 

Symonds VV, Soltis PS, Soltis DE. Dynamics of polyploid formation in Tragopogon (Asteraceae): recurrent formation, gene flow, and population structure. Evolution. 2010;64:1984–2003. https://doi.org/10.1111/j.1558-5646.2010.00978.x.

Article  PubMed  Google Scholar 

Szymajda M, Studnicki M, Kuras A, Żurawicz E. Cross-compatibility in interspecific hybridization between three Prunus species. S Afr J Bot. 2022;146:624–33. https://doi.org/10.1016/j.sajb.2021.11.036.

Article  Google Scholar 

Tate JA, Soltis DE, Soltis PS. Polyploidy in plants. In: Gregory TR, editor. The Evolution of the Genome. Amsterdam: Elsevier Inc; 2005. p. 371–425. https://doi.org/10.1016/B978-012301463-4/50012-8.

Chapter  Google Scholar 

Tate JA, Symonds VV, Doust AN, Buggs RJ, Mavrodiev EV, Majure LC, Soltis PS, Soltis DE. Synthetic polyploids of Tragopogon miscellus and T. mirus (Asteraceae): 60 Years after Ownbey’s discovery. Am J Bot. 2009;96:979–88. https://doi.org/10.3732/ajb.0800299.

Article  PubMed  Google Scholar 

Tiffin P, Olson MS, Moyle LC. Asymmetrical crossing barriers in angiosperms. Proc Biol Sci. 2001;268:861–7. https://doi.org/10.1098/rspb.2000.1578.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Filatov DA. Mechanisms of prezygotic post-pollination reproductive barriers in plants. Front Plant Sci. 2023;5(14):123. https://doi.org/10.3389/fpls.2023.1.

Article  Google Scholar 

Wang Y, Li W, Wang L, et al. Three types of genes underlying the Gametophyte factor1 locus cause unilateral cross incompatibility in maize. Nat Commun. 2022;13:4498. https://doi.org/10.1038/s41467-022-32180-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Widmer A, Lexer C, Cozzolino S. Evolution of reproductive isolation in plants. Heredity. 2009;102:31–8. https://doi.org/10.1038/hdy.2008.69.

Article  CAS  PubMed  Google Scholar 

Wiegand KM. A taxonomist’s experience with hybrids in the Wild. Science. 1935;81(161–166):1. https://doi.org/10.1126/science.81.2094.161.

Article  Google Scholar 

留言 (0)

沒有登入
gif