Gene editing and therapy in acquired and inherited cardiovascular disorders

Anastasiou M, Oikonomou E, Theofilis P, et al. Prolonged impact of anti-cancer therapy on endothelial function and arterial stiffness in breast cancer patients. Vasc Pharmacol. 2023;152:107195. https://doi.org/10.1016/j.vph.2023.107195.

Article  CAS  Google Scholar 

Andreassi MG. Coronary atherosclerosis and somatic mutations: an overview of the contributive factors for oxidative DNA damage. Mutat Res Rev Mutat Res. 2003;543:67–86.

Article  CAS  Google Scholar 

Ballinger SW, Patterson C, Yan C, et al. Mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res. 2000;86:960–7.

Article  CAS  PubMed  Google Scholar 

Basso C, Corrado D, Rossi L, Thiene G. Ventricular preexcitation in children and young adults: atrial myocarditis as a possible trigger of sudden death. Circulation. 2001;103:269–75. https://doi.org/10.1161/01.CIR.103.2.269.

Article  CAS  PubMed  Google Scholar 

Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995;95:2266–74. https://doi.org/10.1172/JCI117917.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Botto N, Masetti S, Petrozzi L, et al. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coron Artery Dis. 2002;13:269–74. https://doi.org/10.1097/00019501-200208000-00004.

Article  PubMed  Google Scholar 

Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321:960–4. https://doi.org/10.1126/SCIENCE.1159689.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128:388–400. https://doi.org/10.1161/CIRCULATIONAHA.113.001878.

Article  PubMed  PubMed Central  Google Scholar 

Cannatà A, Ali H, Sinagra G, Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ Res. 2020. https://doi.org/10.1161/CIRCRESAHA.120.315855.

Article  PubMed  Google Scholar 

Cao G, Xuan X, Zhang R, et al. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front Cardiovasc Med. 2021;8:760140. https://doi.org/10.3389/FCVM.2021.760140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res. 2013;97:571–9. https://doi.org/10.1093/cvr/cvs352.

Article  CAS  PubMed  Google Scholar 

Cui M, Wang Z, Bassel-Duby R, Olson EN. Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development. 2018. https://doi.org/10.1242/DEV.171983.

Article  PubMed  PubMed Central  Google Scholar 

Devetzi M, Goulielmaki M, Khoury N, et al. Genetically-modified stem cells in treatment of human diseases: tissue kallikrein (KLK1)-based targeted therapy (Review). Int J Mol Med. 2018;41:1177–86. https://doi.org/10.3892/IJMM.2018.3361.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92. https://doi.org/10.1161/CIRCRESAHA.115.304351/-/DC1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doetschman T, Azhar M. Cardiac-specific inducible and conditional gene targeting in mice. Circ Res. 2012;110:1498–512. https://doi.org/10.1161/CIRCRESAHA.112.265066.

Article  CAS  PubMed  Google Scholar 

Dorsheimer L, Assmus B, Rasper T, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4:32. https://doi.org/10.1001/JAMACARDIO.2018.3965.

Article  Google Scholar 

Evans MA, Sano S, Walsh K. Cardiovascular disease, aging, and clonal hematopoiesis. Annu Rev Pathol. 2019. https://doi.org/10.1146/annurev-pathmechdis.

Article  PubMed  PubMed Central  Google Scholar 

Flouris GA, Arvanitis DA, Parissis JT, et al. Loss of heterozygosity in DNA mismatch repair genes in human atherosclerotic plaques. Mol Cell Biol Res Commun. 2001;4:62–5. https://doi.org/10.1006/mcbr.2000.0255.

Article  CAS  Google Scholar 

Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development. 2016;143(5):729–40. https://doi.org/10.1242/dev.132910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31:822–6. https://doi.org/10.1038/nbt.2623.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012. https://doi.org/10.1073/PNAS.1208507109/-/DCSUPPLEMENTAL/PNAS.201208507SI.PDF.

Article  PubMed  PubMed Central  Google Scholar 

Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87. https://doi.org/10.1056/NEJMOA1409405.

Article  PubMed  PubMed Central  Google Scholar 

German DM, Mitalipov S, Mishra A, Kaul S. Therapeutic genome editing in cardiovascular diseases. JACC Basic Transl Sci. 2019;4:122–31. https://doi.org/10.1016/j.jacbts.2018.11.004.

Article  PubMed  PubMed Central  Google Scholar 

Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:6072–8. https://doi.org/10.1002/cncr.27633.Percutaneous.

Article  Google Scholar 

Gollob MH, Green MS, Tang AS-L, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344:1823–31. https://doi.org/10.1056/NEJM200106143442403.

Article  CAS  PubMed  Google Scholar 

Gollob MH, Green MS, Tang ASL, Roberts R. PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy. Curr Opin Cardiol. 2002;17:229–34. https://doi.org/10.1097/00001573-200205000-00004.

Article  PubMed  Google Scholar 

Gong J, Zhou D, Jiang L, et al. In vitro lineage-specific differentiation of vascular smooth muscle cells in response to SMAD3 deficiency: implications for SMAD3-related thoracic aortic aneurysm. Arterioscler Thromb Vasc Biol. 2020;40:1651–63. https://doi.org/10.1161/ATVBAHA.120.313033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gray K, Kumar S, Figg N, et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res. 2014;116(5):816–26. https://doi.org/10.1161/CIRCRESAHA.116.304921.

Article  CAS  PubMed  Google Scholar 

Grossman M, Rader DJ, Muller DWM, et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med. 1995;111(1):1148–54. https://doi.org/10.1038/nm1195-1148.

Article  Google Scholar 

Gwathmey JK, Yerevanian A, Hajjar RJ. Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol. 2010;50(5):803–12. https://doi.org/10.1016/j.yjmcc.2010.11.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halcox JPJ. Endothelial dysfunction. Prim Auton Nerv Syst. 2012;12:319–24. https://doi.org/10.1016/B978-0-12-386525-0.00066-4.

Article  Google Scholar 

Hall AE, Burton H. Legal and ethical implications of inherited cardiac disease in clinical practice within the UK. J Med Ethics. 2010;36:762–6. https://doi.org/10.1136/jme.2009.034108.

Article  PubMed  Google Scholar 

Hatzistamou J, Kiaris H, Ergazaki M, Spandidos DA. Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun. 1996;225:186–90. https://doi.org/10.1006/bbrc.1996.1151.

Article  CAS  PubMed  Google Scholar 

Hennig SL, Owen JR, Lin JC, et al. Evaluation of mutation rates, mosaicism and off target mutations when injecting Cas9 mRNA or protein for genome editing of bovine embryos. Sci Rep. 2020;10(1):22309. https://doi.org/10.1038/s41598-020-78264-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higo T, Naito AT, Sumida T, et al. DNA single-strand break-induced DNA damage response causes heart failure. Nat Commun. 2017;8:1–13. https://doi.org/10.1038/ncomms15104.

Comments (0)

No login
gif