Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Commun. 2014;5:3062. https://doi.org/10.1038/ncomms4062.
Article CAS PubMed Google Scholar
Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9:1911. https://doi.org/10.1038/s41467-018-04252-2.
Article CAS PubMed Central PubMed Google Scholar
Ahmad S, Anwar F, Hussain AI, Ashraf M, Awan AR. Does soil salinity affect yield and composition of cottonseed oil? J Am Oil Chem Soc. 2007;84:845–51. https://doi.org/10.1007/s11746-007-1115-8.
Ahmed M, Iqbal A, Latif A, Din SU, Sarwar MB, Wang X, Rao AQ, Husnain T, Ali SA. Overexpression of a sucrose synthase gene indirectly improves cotton fibre quality through sucrose cleavage. Front Plant Sci. 2020;11: 476251. https://doi.org/10.3389/fpls.2020.476251.
Article PubMed Central PubMed Google Scholar
Akram F, Sahreen S, Aamir F, Haq IU, Malik K, Imtiaz M, Naseem W, Nasir N, Waheed HM. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Mol Biotechnol. 2023;65:227–42. https://doi.org/10.1007/s12033-022-00501-4.
Article CAS PubMed Google Scholar
Alberio V, Savy V, Salamone DF. CRISPR-on for Endogenous Activation of SMARCA4 Expression in Bovine Embryos. In: Verma PJ, Sumer H, Liu J, editors. Applications of Genome Modulation and Editing. New York: Springer; 2022. p. 129–48. https://doi.org/10.1007/978-1-0716-2301-5_8.
Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, van der Knaap E, Schatz MC, Lippman ZB. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell. 2020;182:145–61. https://doi.org/10.1016/j.cell.2020.05.021.
Article CAS PubMed Central PubMed Google Scholar
Arzani A, Ashraf M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci. 2016;35:146–89. https://doi.org/10.1080/07352689.2016.1245056.
Babu K, Kathiresan V, Kumari P, Newsom S, Parameshwaran HP, Chen X, Liu J, Qin PZ, Rajan R. Coordinated actions of Cas9 HNH and RuvC nuclease domains are regulated by the bridge helix and the target DNA sequence. Biochemistry. 2021;60:3783–800. https://doi.org/10.1021/acs.biochem.1c00354.
Article CAS PubMed Google Scholar
Bajwa K, Shahid A, Qayyum Rao A, Kiani S, Ashraf M, Dahab A, Bakhsh A, Latif A, Azmat M, Khan U, Puspito A, Aftab A, Bashir A, Husnain T. Expression of Calotropis procera expansin gene CpEXPA3 enhances cotton fibre strength. Aust J Crop Sci. 2013;7:206–12. https://doi.org/10.3316/informit.260677823917094.
Balasubramani G, Raghavendra KP, Das J, Kumar R, Santosh HB, Amudha J, Kranthi S, Kranthi KR. Critical evaluation of GM cotton. In: Mehboob-ur R, Zafar Y, Zhang T, editors. Cotton precision breeding. Berlin: Springer; 2021. p. 351–410. https://doi.org/10.1007/978-3-030-64504-5_16.
Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran L-SP, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 2019;19:131. https://doi.org/10.1186/s12870-019-1746-6.
Article PubMed Central PubMed Google Scholar
Bedon F, Ziolkowski L, Walford SA, Dennis ES, Llewellyn DJ. Members of the MYBMIXTA-like transcription factors may orchestrate the initiation of fibre development in cotton seeds. Front Plant Sci. 2014;5:179. https://doi.org/10.3389/fpls.2014.00179.
Article PubMed Central PubMed Google Scholar
Bhuyan SJ, Kumar M, Devde PR, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Ed. 2023;5:1272678. https://doi.org/10.3389/fgeed.2023.1272678.
Article PubMed Central PubMed Google Scholar
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429–37. https://doi.org/10.1093/nar/gkt520.
Article CAS PubMed Central PubMed Google Scholar
Billah M, Li F, Yang Z. Regulatory network of cotton genes in response to salt, drought and wilt diseases (Verticillium and Fusarium): progress and perspective. Front Plant Sci. 2021;12: 759245. https://doi.org/10.3389/fpls.2021.759245.
Article PubMed Central PubMed Google Scholar
Binyameen B, Khan Z, Khan SH, Ahmad A, Munawar N, Mubarik MS, Riaz H, Ali Z, Khan AA, Qusmani AT, Abd-Elsalam KA. Using multiplexed CRISPR/Cas9 for suppression of cotton leaf curl virus. Int J Mol Sci. 2021;22:12543. https://doi.org/10.3390/ijms222212543.
Article CAS PubMed Central PubMed Google Scholar
Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM. Optimization of prime editing in rice, peanut, chickpea, and cowpea protoplasts by restoration of GFP activity. Int J Mol Sci. 2022;23:9809. https://doi.org/10.3390/ijms23179809.
Article CAS PubMed Central PubMed Google Scholar
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12. https://doi.org/10.1126/science.1178811.
Article CAS PubMed Google Scholar
Boopathi NM, Hoffmann LV. Genetic diversity, erosion, and population structure in cotton genetic resources. In: Ahuja MR, Jain SM, editors. Genetic diversity and erosion in plants: case histories. Berlin: Springer; 2016. p. 409–38. https://doi.org/10.1007/978-3-319-25954-3_12.
Boubakri H. Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Gene. 2023;866: 147334. https://doi.org/10.1016/j.gene.2023.147334.
Article CAS PubMed Google Scholar
Bouchabke-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep. 2013;32:675–86. https://doi.org/10.1007/s00299-013-1402-9.
Article CAS PubMed Google Scholar
Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol. 2018;18:1–9. https://doi.org/10.1186/s12870-018-1387-1.
Cai X, Chang L, Zhang T, Chen H, Zhang L, Lin R, Liang J, Wu J, Freeling M, Wang X. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genom Biol. 2021;22:166. https://doi.org/10.1186/s13059-021-02383-2.
Chen P, Jian H, Wei F, Gu L, Hu T, Lv X, Guo X, Lu J, Ma L, Wang H, Wu A, Mao G, Yu S, Wei H. Phylogenetic analysis of the membrane attack complex/perforin domain-containing proteins in Gossypium and the role of GhMACPF26 in cotton under cold stress. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.684227.
Article PubMed Central PubMed Google Scholar
Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023;24:161–77. https://doi.org/10.1038/s41576-022-00541-1.
Article CAS PubMed Google Scholar
Chen W, Yao J, Li Y, Zhao L, Liu J, Guo Y, Wang J, Yuan L, Liu Z, Lu Y, Zhang Y. Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton. Theor Appl Genet. 2019;132:97–112. https://doi.org/10.1007/s00122-018-3197-0.
Article CAS PubMed Google Scholar
Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep. 2017;7:44304. https://doi.org/10.1038/srep44304.
Article CAS PubMed Central PubMed Google Scholar
Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z, Zhang X, Jin S. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnol J. 2021;19(3):424–6. https://doi.org/10.1111/pbi.13507.
Article CAS PubMed Google Scholar
Chen Y, Zhang JB, Wei N, Liu ZH, Li Y, Zheng Y, Li XB. A type-2C protein phosphatase (GhDRP1) participates in cotton (Gossypium hirsutum) response to drought stress. Plant Mol Biol. 2021;107:499–517. https://doi.org/10.1007/s11103-021-01198-w.
Article CAS PubMed Google Scholar
Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23:1163–71. https://doi.org/10.1038/cr.2013.122.
Article CAS PubMed Central PubMed Google Scholar
Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE. 2015;10: e0143022. https://doi.org/10.1371/journal.pone.0143022.
Comments (0)