Abas A, Sulaiman N, Adnan NR, Aziz SA, Nawang WNSW. Using lichen (Dirinaria sp.) as bio-indicator for airborne heavy metal at selected industrial areas in Malaysia. Environ Asia. 2019;12(3):85–90. https://doi.org/10.14456/ea.2019.48.
Agnan Y, Probst A, Séjalon-Delmas N. Evaluation of lichen species resistance to atmospheric metal pollution by coupling diversity and bioaccumulation approaches: a new bioindication scale for French forested areas. Ecol Ind. 2017;72:99–110. https://doi.org/10.1016/j.ecolind.2016.08.006.
Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019. https://doi.org/10.1155/2019/6730305.
Aprile GG, Di Salvatore M, Carratù G, Mingo A, Carafa AM. Comparison of the suitability of two lichen species and one higher plant for monitoring airborne heavy metals. Environ Monit Assess. 2010;162:291–9. https://doi.org/10.1007/s10661-009-0796-x.
Article CAS PubMed Google Scholar
Awasthi DD. A key to the microlichens of India, Nepal and Sri lanka. Bibilotheca Lichenologica. Add J Crammer Berlin Stuttgart. 1991;40:1–337.
Bačkor M, Fahselt D. Physiological attributes of the lichen Cladonia pleurota in heavy metal-rich and control sites near Sudbury (Ont., Canada). Environ Exp Botany. 2004;52(2):149–59. https://doi.org/10.1016/j.envexpbot.2004.01.014.
Bajpai R, Shukla V, Raju A, Singh CP, Upreti DK. A geostatistical approach to compare metal accumulation pattern by lichens in plain and mountainous regions of northern and central India. Environ Earth Sci. 2022;81(7):203. https://doi.org/10.1007/s12665-022-10336-6.
Article ADS CAS Google Scholar
Bajpai R, Upreti DK, Dwivedi SK, Nayaka S. Lichen as quantitative biomonitors of atmospheric heavy metals deposition in Central India. J Atmos Chem. 2009;63:235–46. https://doi.org/10.1007/s10874-010-9166-x.
Bajpai R, Upreti DK, Dwivedi SK. Passive monitoring of atmospheric heavy metals in a historical city of central India by Lepraria lobificans Nyl. Environ Monit Assess. 2010b;166:477–84. https://doi.org/10.1007/s10661-009-1016-4.
Article CAS PubMed Google Scholar
Bajpai R, Upreti DK, Nayaka S, Kumari B. Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India. J Hazard Mater. 2010c;174(1–3):429–36. https://doi.org/10.1016/j.jhazmat.2009.09.071.
Article CAS PubMed Google Scholar
Bajpai R, Upreti DK, Nayaka S. Accumulation of arsenic and fluoride in lichen Pyxine cocoes (Sw.) Nyl., growing in the vicinity of coal-based thermal power plant at Raebareli, India. J Exp Sci. 2010;1(4):37–40.
Banerjee S, Ram SS, Mukhopadhyay A, Jana N, Sudarshan M, Chakraborty A. Potential of Epiphytic Lichen Pyxine cocoes, as an indicator of air pollution in Kolkata, India. Proc Natl Acad Sci, India Sec B Biol Sci. 2023;93(1):165–80. https://doi.org/10.1007/s40011-022-01395-7.
Belguidoum A, Haichour R, Lograda T, Ramdani M. Biomonitoring of air pollution by lichen diversity in the urban area of Setif, Algeria. Biodivers J Biol Divers. 2022;23(2):970–81. https://doi.org/10.13057/biodiv/d230240.
Bergamaschi L, Rizzio E, Giaveri G, Loppi S, Gallorini M. Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ Pollut. 2007;148(2):468–76. https://doi.org/10.1016/j.envpol.2006.12.003.
Article CAS PubMed Google Scholar
Bhat M, Shukla V, Upreti DK, Verma S, Sharma G, Anand R. Assessment of air quality of Rajouri town, Jammu & Kashmir, using lichen transplant technique. Sci Technol. 2014;2(1):15–9.
Boamponsem LK, Adam JI, Dampare SB, Nyarko BJB, Essumang DK. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nucl Instrum Methods Phys Res, Sect B. 2010;268(9):1492–501. https://doi.org/10.1016/j.nimb.2010.01.007.
Article ADS CAS Google Scholar
Boonpeng C, Polyiam W, Sriviboon C, Sangiamdee D, Watthana S, Nimis PL, Boonpragob K. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl) Hale. Environ Sci Pollut Res. 2017;24:12393–404. https://doi.org/10.1007/s11356-017-8893-9.
Bosch-Roig P, Barca D, Crisci GM, Lalli C. Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. J Atmos Chem. 2013;70:373–88. https://doi.org/10.1007/s10874-013-9273-6.
Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.
Article CAS PubMed PubMed Central Google Scholar
Chaparro MA, Lavornia JM, Chaparro MA, Sinito AM. Biomonitors of urban air pollution: magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environ Pollut. 2013;172:61–9. https://doi.org/10.1016/j.envpol.2012.08.006.
Article CAS PubMed Google Scholar
Chisholm JE, Jones GC, Purvis OW. Hydrated copper oxalate, moolooite, in lichens. Mineral Mag. 1987;51(363):715–8. https://doi.org/10.1180/minmag.1987.051.363.12.
Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut. 2001;114(3):471–92. https://doi.org/10.1016/S0269-7491(00)00224-4.
Article CAS PubMed Google Scholar
Cuny D, Van Haluwyn C, Shirali P, Zerimech F, Jérôme L, Haguenoer JM. Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R. Sant.–identification of oxidative stress biomarkers. Water, Air, Soil Pollut. 2004;152:55–69. https://doi.org/10.1023/B:WATE.0000015332.94219.ff.
Article ADS CAS Google Scholar
Daimari R, Bhuyan P, Hussain S, Nayaka S, Mazumder MJ, Hoque RR. Anatomical, physiological, and chemical alterations in lichen (Parmotrema tinctorum (Nyl.) Hale) transplants due to air pollution in two cities of Brahmaputra Valley, India. Environ Monitor Assess. 2021;193:1–12. https://doi.org/10.1007/s10661-021-08897-3.
Daimari R, Bhuyan P, Hussain S, Nayaka S, Mazumder MJ, Hoque RR. Biomonitoring by epiphytic lichen species—Pyxine cocoes (Sw.) Nyl.: understanding characteristics of trace metal in ambient air of different landuses in mid-Brahmaputra Valley. Environ Monitor Assess. 2020;192:1–11. https://doi.org/10.1007/s10661-019-8007-x.
Dathong W. Epiphytic lichen diversity in different areas of Nakhon Ratchasima, Thailand. Suranaree J Sci Technol. 2016;23(2):135–40.
De Sloover J, LeBlanc F. Mapping of atmospheric pollution on the basis of lichen sensitivity. In: Proceedings of the symposium on recent advances in tropical ecology (R. Misra & B. Gopal, eds). 1968;42–56.
Deschamps E, Matschullat J. Arsenic: Natural and anthropogenic. CRC Press (Eds.). 2011.
Essilmi M, Loudiki M, El Gharmali A. Study of the lichens of the Moroccan Atlantic coast Safi-Essaouira: bioindication of air quality and limiting factors. Appl Ecol Environ Res. 2019. https://doi.org/10.15666/aeer/1702_43054323.
Frati L, Brunialti G. Recent trends and future challenges for lichen biomonitoring in forests. Forests. 2023;14(3):647. https://doi.org/10.3390/f14030647.
Garty J, Galun M, Fuchs C, Zisapel N. Heavy metals in the lichen Caloplaca aurantia from urban, suburban and rural regions in Israel (a comparative study). Water Air Soil Pollut. 1977;8:171–88. https://doi.org/10.1007/BF00294041.
Article ADS CAS Google Scholar
Garty J, Galun M, Hochberg Y. The accumulation of metals in Caloplaca aurantia growing on concrete roof tiles. Lichenologist. 1986;18(3):257–63. https://doi.org/10.1017/S0024282986000324.
Gupta N, Dwivedi SK, Upreti DK. Studies on uptake and localization of metals in lichens growing around thermal power plant through application of SEM and FTIR techniques. Cryptogam Biodivers Assess. 2017;2(01):37–52. https://doi.org/10.21756/cab.v2i1.8608.
Gupta N, Gupta V, Dwivedi SK, Upreti DK. Comparative bioaccumulation potential of Pyxine cocoes and Bacidia submedialis in and around Faizabad city, Uttar Pradesh, India. G-J Environ Sci Technol. 2015;2(6):86–92.
Gupta N, Gupta V, Dwivedi SK, Upreti DK. Phytochemical screening by FTIR spectroscopic analysis of lichen Rinodina sophodes commonly growing around Panki and Feroze Gandhi Unchahar thermal power plants of Uttar Pradesh, India. Octa J Environ Res. 2021;9(2):0521–1061.
Gupta S, Rai H, Upreti DK, Gupta RK, Sharma PK. Lichenized fungi Phaeophyscia (Physciaceae, ascomycota) as indicator of ambient air heavy metal deposition, along land use gradient in an alpine habitat of Western Himalaya. Pollut Res. 2017;36(1):150–7.
Gupta V, Gupta N, Nayaka S, Lavania S, Srivastava PK. Pyxine cocoes (Sw.) Nyl. as an ideal lichen species for biomonitoring studies: a systematic review. Indian Bot Soc. 2023;103(4):245–56. https://doi.org/10.61289/jibs2023.28.09.1179.
Ite AE, Udousoro II, Ibok UJ. Distribution of some atmospheric heavy metals in lichen and moss samples collected from Eket and Ibeno Local Government Areas of AkwaIbom State, Nigeria. Am J Environ Prot. 2014;2(1):22–31. https://doi.org/10.12691/env-2-1-5.
Karakoti N, Bajpai R, Upreti DK, Mishra GK, Srivastava A, Nayaka S. Effect of metal content on chlorophyll fluorescence and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl.: a case study from Uttar Pradesh, India. Environ Earth Sci. 2014;71:2177–83. https://doi.org/10.1007/s12665-013-2623-5.
Article ADS CAS Google Scholar
Khani MR, Sekhavatjoo MS, Khorasan N, Shahabpour G. Survey of changes in lichen bioindicator, Lecanora mularis, in exposure to different concentrations of sulfur dioxide. J Environ Sci Technol. 2015;17(3):87–95.
Comments (0)