Delineating biomonitoring potential of two crustose lichens Bacidia convexula and B. submedialis through elemental accumulation and microstructural parameters

Abas A, Sulaiman N, Adnan NR, Aziz SA, Nawang WNSW. Using lichen (Dirinaria sp.) as bio-indicator for airborne heavy metal at selected industrial areas in Malaysia. Environ Asia. 2019;12(3):85–90. https://doi.org/10.14456/ea.2019.48.

Article  Google Scholar 

Agnan Y, Probst A, Séjalon-Delmas N. Evaluation of lichen species resistance to atmospheric metal pollution by coupling diversity and bioaccumulation approaches: a new bioindication scale for French forested areas. Ecol Ind. 2017;72:99–110. https://doi.org/10.1016/j.ecolind.2016.08.006.

Article  CAS  Google Scholar 

Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019. https://doi.org/10.1155/2019/6730305.

Article  Google Scholar 

Aprile GG, Di Salvatore M, Carratù G, Mingo A, Carafa AM. Comparison of the suitability of two lichen species and one higher plant for monitoring airborne heavy metals. Environ Monit Assess. 2010;162:291–9. https://doi.org/10.1007/s10661-009-0796-x.

Article  CAS  PubMed  Google Scholar 

Awasthi DD. A key to the microlichens of India, Nepal and Sri lanka. Bibilotheca Lichenologica. Add J Crammer Berlin Stuttgart. 1991;40:1–337.

Google Scholar 

Bačkor M, Fahselt D. Physiological attributes of the lichen Cladonia pleurota in heavy metal-rich and control sites near Sudbury (Ont., Canada). Environ Exp Botany. 2004;52(2):149–59. https://doi.org/10.1016/j.envexpbot.2004.01.014.

Article  CAS  Google Scholar 

Bajpai R, Shukla V, Raju A, Singh CP, Upreti DK. A geostatistical approach to compare metal accumulation pattern by lichens in plain and mountainous regions of northern and central India. Environ Earth Sci. 2022;81(7):203. https://doi.org/10.1007/s12665-022-10336-6.

Article  ADS  CAS  Google Scholar 

Bajpai R, Upreti DK, Dwivedi SK, Nayaka S. Lichen as quantitative biomonitors of atmospheric heavy metals deposition in Central India. J Atmos Chem. 2009;63:235–46. https://doi.org/10.1007/s10874-010-9166-x.

Article  CAS  Google Scholar 

Bajpai R, Upreti DK, Dwivedi SK. Passive monitoring of atmospheric heavy metals in a historical city of central India by Lepraria lobificans Nyl. Environ Monit Assess. 2010b;166:477–84. https://doi.org/10.1007/s10661-009-1016-4.

Article  CAS  PubMed  Google Scholar 

Bajpai R, Upreti DK, Nayaka S, Kumari B. Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India. J Hazard Mater. 2010c;174(1–3):429–36. https://doi.org/10.1016/j.jhazmat.2009.09.071.

Article  CAS  PubMed  Google Scholar 

Bajpai R, Upreti DK, Nayaka S. Accumulation of arsenic and fluoride in lichen Pyxine cocoes (Sw.) Nyl., growing in the vicinity of coal-based thermal power plant at Raebareli, India. J Exp Sci. 2010;1(4):37–40.

Google Scholar 

Banerjee S, Ram SS, Mukhopadhyay A, Jana N, Sudarshan M, Chakraborty A. Potential of Epiphytic Lichen Pyxine cocoes, as an indicator of air pollution in Kolkata, India. Proc Natl Acad Sci, India Sec B Biol Sci. 2023;93(1):165–80. https://doi.org/10.1007/s40011-022-01395-7.

Article  CAS  Google Scholar 

Belguidoum A, Haichour R, Lograda T, Ramdani M. Biomonitoring of air pollution by lichen diversity in the urban area of Setif, Algeria. Biodivers J Biol Divers. 2022;23(2):970–81. https://doi.org/10.13057/biodiv/d230240.

Article  Google Scholar 

Bergamaschi L, Rizzio E, Giaveri G, Loppi S, Gallorini M. Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ Pollut. 2007;148(2):468–76. https://doi.org/10.1016/j.envpol.2006.12.003.

Article  CAS  PubMed  Google Scholar 

Bhat M, Shukla V, Upreti DK, Verma S, Sharma G, Anand R. Assessment of air quality of Rajouri town, Jammu & Kashmir, using lichen transplant technique. Sci Technol. 2014;2(1):15–9.

Google Scholar 

Boamponsem LK, Adam JI, Dampare SB, Nyarko BJB, Essumang DK. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nucl Instrum Methods Phys Res, Sect B. 2010;268(9):1492–501. https://doi.org/10.1016/j.nimb.2010.01.007.

Article  ADS  CAS  Google Scholar 

Boonpeng C, Polyiam W, Sriviboon C, Sangiamdee D, Watthana S, Nimis PL, Boonpragob K. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl) Hale. Environ Sci Pollut Res. 2017;24:12393–404. https://doi.org/10.1007/s11356-017-8893-9.

Article  CAS  Google Scholar 

Bosch-Roig P, Barca D, Crisci GM, Lalli C. Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. J Atmos Chem. 2013;70:373–88. https://doi.org/10.1007/s10874-013-9273-6.

Article  CAS  Google Scholar 

Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaparro MA, Lavornia JM, Chaparro MA, Sinito AM. Biomonitors of urban air pollution: magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environ Pollut. 2013;172:61–9. https://doi.org/10.1016/j.envpol.2012.08.006.

Article  CAS  PubMed  Google Scholar 

Chisholm JE, Jones GC, Purvis OW. Hydrated copper oxalate, moolooite, in lichens. Mineral Mag. 1987;51(363):715–8. https://doi.org/10.1180/minmag.1987.051.363.12.

Article  CAS  Google Scholar 

Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut. 2001;114(3):471–92. https://doi.org/10.1016/S0269-7491(00)00224-4.

Article  CAS  PubMed  Google Scholar 

Cuny D, Van Haluwyn C, Shirali P, Zerimech F, Jérôme L, Haguenoer JM. Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R. Sant.–identification of oxidative stress biomarkers. Water, Air, Soil Pollut. 2004;152:55–69. https://doi.org/10.1023/B:WATE.0000015332.94219.ff.

Article  ADS  CAS  Google Scholar 

Daimari R, Bhuyan P, Hussain S, Nayaka S, Mazumder MJ, Hoque RR. Anatomical, physiological, and chemical alterations in lichen (Parmotrema tinctorum (Nyl.) Hale) transplants due to air pollution in two cities of Brahmaputra Valley, India. Environ Monitor Assess. 2021;193:1–12. https://doi.org/10.1007/s10661-021-08897-3.

Article  CAS  Google Scholar 

Daimari R, Bhuyan P, Hussain S, Nayaka S, Mazumder MJ, Hoque RR. Biomonitoring by epiphytic lichen species—Pyxine cocoes (Sw.) Nyl.: understanding characteristics of trace metal in ambient air of different landuses in mid-Brahmaputra Valley. Environ Monitor Assess. 2020;192:1–11. https://doi.org/10.1007/s10661-019-8007-x.

Article  CAS  Google Scholar 

Dathong W. Epiphytic lichen diversity in different areas of Nakhon Ratchasima, Thailand. Suranaree J Sci Technol. 2016;23(2):135–40.

Google Scholar 

De Sloover J, LeBlanc F. Mapping of atmospheric pollution on the basis of lichen sensitivity. In: Proceedings of the symposium on recent advances in tropical ecology (R. Misra & B. Gopal, eds). 1968;42–56.

Deschamps E, Matschullat J. Arsenic: Natural and anthropogenic. CRC Press (Eds.). 2011.

Essilmi M, Loudiki M, El Gharmali A. Study of the lichens of the Moroccan Atlantic coast Safi-Essaouira: bioindication of air quality and limiting factors. Appl Ecol Environ Res. 2019. https://doi.org/10.15666/aeer/1702_43054323.

Article  Google Scholar 

Frati L, Brunialti G. Recent trends and future challenges for lichen biomonitoring in forests. Forests. 2023;14(3):647. https://doi.org/10.3390/f14030647.

Article  Google Scholar 

Garty J, Galun M, Fuchs C, Zisapel N. Heavy metals in the lichen Caloplaca aurantia from urban, suburban and rural regions in Israel (a comparative study). Water Air Soil Pollut. 1977;8:171–88. https://doi.org/10.1007/BF00294041.

Article  ADS  CAS  Google Scholar 

Garty J, Galun M, Hochberg Y. The accumulation of metals in Caloplaca aurantia growing on concrete roof tiles. Lichenologist. 1986;18(3):257–63. https://doi.org/10.1017/S0024282986000324.

Article  CAS  Google Scholar 

Gupta N, Dwivedi SK, Upreti DK. Studies on uptake and localization of metals in lichens growing around thermal power plant through application of SEM and FTIR techniques. Cryptogam Biodivers Assess. 2017;2(01):37–52. https://doi.org/10.21756/cab.v2i1.8608.

Article  Google Scholar 

Gupta N, Gupta V, Dwivedi SK, Upreti DK. Comparative bioaccumulation potential of Pyxine cocoes and Bacidia submedialis in and around Faizabad city, Uttar Pradesh, India. G-J Environ Sci Technol. 2015;2(6):86–92.

Google Scholar 

Gupta N, Gupta V, Dwivedi SK, Upreti DK. Phytochemical screening by FTIR spectroscopic analysis of lichen Rinodina sophodes commonly growing around Panki and Feroze Gandhi Unchahar thermal power plants of Uttar Pradesh, India. Octa J Environ Res. 2021;9(2):0521–1061.

Google Scholar 

Gupta S, Rai H, Upreti DK, Gupta RK, Sharma PK. Lichenized fungi Phaeophyscia (Physciaceae, ascomycota) as indicator of ambient air heavy metal deposition, along land use gradient in an alpine habitat of Western Himalaya. Pollut Res. 2017;36(1):150–7.

Google Scholar 

Gupta V, Gupta N, Nayaka S, Lavania S, Srivastava PK. Pyxine cocoes (Sw.) Nyl. as an ideal lichen species for biomonitoring studies: a systematic review. Indian Bot Soc. 2023;103(4):245–56. https://doi.org/10.61289/jibs2023.28.09.1179.

Article  Google Scholar 

Ite AE, Udousoro II, Ibok UJ. Distribution of some atmospheric heavy metals in lichen and moss samples collected from Eket and Ibeno Local Government Areas of AkwaIbom State, Nigeria. Am J Environ Prot. 2014;2(1):22–31. https://doi.org/10.12691/env-2-1-5.

Article  CAS  Google Scholar 

Karakoti N, Bajpai R, Upreti DK, Mishra GK, Srivastava A, Nayaka S. Effect of metal content on chlorophyll fluorescence and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl.: a case study from Uttar Pradesh, India. Environ Earth Sci. 2014;71:2177–83. https://doi.org/10.1007/s12665-013-2623-5.

Article  ADS  CAS  Google Scholar 

Khani MR, Sekhavatjoo MS, Khorasan N, Shahabpour G. Survey of changes in lichen bioindicator, Lecanora mularis, in exposure to different concentrations of sulfur dioxide. J Environ Sci Technol. 2015;17(3):87–95.

Google Scholar 

Comments (0)

No login
gif