A recent update on development, synthesis methods, properties and application of natural products derived carbon dots

Xu X, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–7.

Article  CAS  PubMed  Google Scholar 

Sun Y-P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7.

Article  CAS  PubMed  Google Scholar 

Kang Z, Lee S-T. Carbon dots: advances in nanocarbon applications. Nanoscale. 2019;11(41):19214–24.

Article  CAS  PubMed  Google Scholar 

Tuerhong M, Yang X, Xue-Bo Y. Review on carbon dots and their applications. Chin J Anal Chem. 2017;45(1):139–50.

Article  Google Scholar 

da Silvaa JCE, Leitãob JM. Parallel factor analysis methods and the second order advantage in molecular fluorescence analysis. Global J Anal Chem. 2010;1(2):161–80.

Google Scholar 

Arora N, Sharma N. Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater. 2014;50:135–50.

Article  CAS  Google Scholar 

Thongpool V, Asanithi P, Limsuwan P. Synthesis of carbon particles using laser ablation in ethanol. Procedia Eng. 2012;32:1054–60.

Article  CAS  Google Scholar 

Gao Y, et al. Matrix-free and highly efficient room-temperature phosphorescence of nitrogen-doped carbon dots. Langmuir. 2018;34(43):12845–52.

Article  CAS  PubMed  Google Scholar 

Zhi B, et al. Malic acid carbon dots: from super-resolution live-cell imaging to highly efficient separation. ACS Nano. 2018;12(6):5741–52.

Article  CAS  PubMed  Google Scholar 

Qu S, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed. 2012;51(49):12215–8.

Article  CAS  Google Scholar 

Ding H, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 2016;10(1):484–91.

Article  CAS  PubMed  Google Scholar 

Lin L, et al. Hydrothermal synthesis of carbon dots codoped with nitrogen and phosphorus as a turn-on fluorescent probe for cadmium (II). Microchim Acta. 2019;186:1–7.

Article  Google Scholar 

Chu K-W, et al. Recent progress of carbon dot precursors and photocatalysis applications. Polymers. 2019;11(4):689.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jouyandeh M, et al. Quantum dots for photocatalysis: synthesis and environmental applications. Green Chem. 2021;23(14):4931–54.

Article  CAS  Google Scholar 

Liu S, et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Adv Mater. 2012;24(15):2037–41.

Article  CAS  PubMed  Google Scholar 

Jiang C, et al. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Talanta. 2014;127:68–74.

Article  CAS  PubMed  Google Scholar 

Dinç S. A simple and green extraction of carbon dots from sugar beet molasses: biosensor applications. Sugar Ind. 2016;141(9):560–4.

Article  Google Scholar 

Suryawanshi A, et al. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions. Nanoscale. 2014;6(20):11664–70.

Article  CAS  PubMed  Google Scholar 

Liu Y, Zhao Y, Zhang Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection. Sens Actuators, B Chem. 2014;196:647–52.

Article  CAS  Google Scholar 

Mehta VN, et al. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens Actuators, B Chem. 2015;213:434–43.

Article  CAS  Google Scholar 

Atchudan R, et al. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens Actuators, B Chem. 2017;246:497–509.

Article  CAS  Google Scholar 

Atchudan R, et al. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl Surf Sci. 2016;384:432–41.

Article  CAS  Google Scholar 

Bhati A, et al. Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting Mg-N-embedded carbon dots. ACS Sustain Chem Eng. 2018;6(7):9246–56.

Article  CAS  Google Scholar 

Li Y, et al. Presence and formation of fluorescence carbon dots in a grilled hamburger. Food Funct. 2017;8(7):2558–65.

Article  CAS  PubMed  Google Scholar 

Song P, et al. A multianalyte fluorescent carbon dots sensing system constructed based on specific recognition of Fe (III) ions. RSC Adv. 2017;7(46):28637–46.

Article  CAS  Google Scholar 

Liang Z, et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH 4 OH passivation. J Mater Chem C. 2014;2(45):9760–6.

Article  CAS  Google Scholar 

Alam A-M, et al. Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem. 2015;17(7):3791–7.

Article  CAS  Google Scholar 

Briscoe J, et al. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew Chem Int Ed. 2015;54(15):4463–8.

Article  CAS  Google Scholar 

Min S, et al. Gelatin/poly (vinyl alcohol)-based functional films integrated with spent coffee ground-derived carbon dots and grapefruit seed extract for active packaging application. Int J Biol Macromol. 2023;231: 123493.

Article  CAS  PubMed  Google Scholar 

Feng X, et al. Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging. RSC Adv. 2015;5(40):31250–4.

Article  CAS  Google Scholar 

Zhu L, et al. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J Mater Chem C. 2013;1(32):4925–32.

Article  CAS  Google Scholar 

Li D, Xia Y. Fabrication of Titania nanofibers by electrospinning. Nano Lett. 2003;3(4):555–60.

Article  CAS  Google Scholar 

Tyagi A, et al. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 2016;6(76):72423–32.

Article  CAS  Google Scholar 

Guo L, et al. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale. 2016;8(2):729–34.

Article  CAS  PubMed  Google Scholar 

Zhang J, Yu S-H. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today. 2016;19(7):382–93.

Article  CAS  Google Scholar 

Zhao S, et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces. 2015;7(31):17054–60.

Article  CAS  PubMed  Google Scholar 

Wang L, Zhou HS. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem. 2014;86(18):8902–5.

Article  CAS  PubMed  Google Scholar 

González-González RB, et al. Synthesis, purification, and characterization of carbon dots from non-activated and activated pyrolytic carbon black. Nanomaterials. 2022;12(3):298.

Article  PubMed  PubMed Central  Google Scholar 

Su J, et al. One-step hydrothermal preparation of biomass-derived carbon dots as fluorescent probes for the detection of enrofloxacin in aquatic products. J Food Meas Charact. 2023;17:4565.

Article  Google Scholar 

Wei X, et al. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in zebrafish. ACS Appl Mater Interfaces. 2019;11(10):9832–40.

Article  CAS  PubMed  Google Scholar 

Saxena M, Sarkar S. Synthesis of carbogenic nanosphere from peanut skin. Diam Relat Mater. 2012;24:11–4.

Article  CAS  Google Scholar 

Teng X, et al. Green synthesis of nitrogen-doped carbon dots from konjac flour with “off–on” fluorescence by Fe 3+ and L-lysine for bioimaging. J Mater Chem B. 2014;2(29):4631–9.

Article  CAS  PubMed  Google Scholar 

Ma CA, et al. Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. J Mater Sci. 2019;54(13):9372–84.

留言 (0)

沒有登入
gif