Non-coding RNAs in disease: from mechanisms to therapeutics

The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007). This work describes the ENCODE project aiming to identify all functional elements of the human genome, especially ncRNAs.

Article  PubMed Central  Google Scholar 

ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306, 636–640 (2004).

Article  Google Scholar 

Kapranov, P., Willingham, A. T. & Gingeras, T. R. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413–423 (2007).

Article  CAS  PubMed  Google Scholar 

van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007). This work presents the earliest evidence of a role for miRNAs in cardiac function.

Article  PubMed  Google Scholar 

Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

Article  CAS  PubMed  Google Scholar 

Giraldez, A. J. et al. microRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

Article  CAS  PubMed  Google Scholar 

Chmielarz, P. et al. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 8, e2813 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calin, G. A. & Croce, C. M. microRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

Article  CAS  PubMed  Google Scholar 

Sayed, D., Hong, C., Chen, I. Y., Lypowy, J. & Abdellatif, M. microRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424 (2007).

Article  CAS  PubMed  Google Scholar 

Care, A. et al. microRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

Article  CAS  PubMed  Google Scholar 

Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

Article  CAS  PubMed  Google Scholar 

McDonald, J. T. et al. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep. 37, 109839 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigo, R. & Johnson, R. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19, 535–548 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y.-C. et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 44, D209–D215 (2016).

Article  CAS  PubMed  Google Scholar 

Shen, C. et al. Identification of a dysregulated circRNA-associated gene signature for predicting prognosis, immune landscape, and drug candidates in bladder cancer. Front. Oncol. 12, 1018285 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. J., Zhu, W. K., Qi, F. Y. & Che, F. Y. circHIPK3 promotes neuroinflammation through regulation of the miR-124-3p/STAT3/NLRP3 signaling pathway in Parkinson’s disease. Adv. Clin. Exp. Med. 32, 315–329 (2022).

Article  CAS  Google Scholar 

Zhou, H. et al. Identification of circular RNA BTBD7_hsa_circ_0000563 as a novel biomarker for coronary artery disease and the functional discovery of BTBD7_hsa_circ_0000563 based on peripheral blood mononuclear cells: a case control study. Clin. Proteom. 19, 37 (2022).

Article  CAS  Google Scholar 

Ward, Z. et al. Identifying candidate circulating RNA markers for coronary artery disease by deep RNA-sequencing in human plasma. Cells 11, 3191 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattick, J. S. RNA regulation: a new genetics. Nat. Rev. Genet. 5, 316–323 (2004).

Article  CAS  PubMed  Google Scholar 

Orellana, E. A., Siegal, E. & Gregory, R. I. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022).

Article  CAS  PubMed  Google Scholar 

Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

Article  CAS  PubMed  Google Scholar 

Bansal, P. & Arora, M. Small interfering RNAs and RNA therapeutics in cardiovascular diseases. Adv. Exp. Med. Biol. 1229, 369–381 (2020).

Article  CAS  PubMed  Google Scholar 

Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18 (2018).

Article  CAS  PubMed  Google Scholar 

Fabbri, M., Girnita, L., Varani, G. & Calin, G. A. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 29, 1377–1388 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

Article  CAS  PubMed  Google Scholar 

Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

Article  CAS  PubMed  Google Scholar 

Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019). This work presents the recent update of miRBase, the official miRNA database, which is regularly updated and widely used.

Article  CAS  PubMed  Google Scholar 

Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

Article  CAS  PubMed  Google Scholar 

Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartel, D. P. microRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. microRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

Article  CAS  PubMed  Google Scholar 

Shang, R., Lee, S., Senavirathne, G. & Lai, E. C. microRNAs in action: biogenesis, function and regulation. Nat. Rev. Genet. https://doi.org/10.1038/s41576-023-00611-y (2023).

Article  PubMed  Google Scholar 

Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007). This study shows that, besides their well-known target-repressing function, miRNAs can also activate their target genes.

Article  CAS  PubMed  Google Scholar 

Li, G. et al. CCAR1 5′ UTR as a natural miRancer of miR-1254 overrides tamoxifen resistance. Cell Res. 26, 655–673 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Orom, U. A., Nielsen, F. C. & Lund, A. H. microRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30, 460–471 (2008).

Article  PubMed  Google Scholar 

Bayraktar, R., Van Roosbroeck, K. & Calin, G. A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol. 11, 1673–1686 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drula, R. et al. 17β-Estradiol promotes extracellular vesicle release and selective miRNA loading in ERα-positive breast cancer. Proc. Natl Acad. Sci. USA 120, e2122053120 (2023). This study provides mechanistic evidence that hormones influence extracellular vesicle secretion and loading with miRNAs.

Article  CAS 

留言 (0)

沒有登入
gif