Acar, F., Maumet, C., Heuten, T., Vervoort, M., Bossier, H., Seurinck, R., & Moerkerke, B. (2022). Review paper: reporting practices for task fMRI studies. Neuroinformatics.
Acar, F., Seurinck, R., Eickhoff, S. B., & Moerkerke, B. (2018). Assessing robustness against potential publication bias in Activation Likelihood Estimation (ALE) meta-analyses for fMRI. PLoS ONE, 13, 1–23. https://doi.org/10.1371/journal.pone.0208177
Bossier, H., Nichols, T. E., & Moerkerke, B. (2019). Standardized effect sizes and image-based meta-analytical approaches for fMRI data. bioRxiv. https://doi.org/10.1101/865881
Bowring, A., Maumet, C., & Nichols, T. E. (2019). Exploring the impact of analysis software on task fMRI results. Human Brain Mapping, 40, 3362–3384.
Article PubMed PubMed Central Google Scholar
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafo, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365–376.
Article CAS PubMed Google Scholar
Carp, J. (2012). The secret lives of experiments: Methods reporting in the fMRI literature. NeuroImage, 63, 289–300.
Chen, G., Taylor, P. A., & Cox, R. W. (2017). Is the statistic value all we should care about in neuroimaging? NeuroImage, 147, 952–959.
Cooper, H., & Hedges, L. V. (2009). The Handbook of Research Synthesis. Russell Sage Foundation.
Costafreda, S. G. (2012). Parametric coordinate-based meta-analysis: Valid effect size meta-analysis of studies with differing statistical thresholds. Journal of Neuroscience Methods, 210, 291–300.
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.
Article CAS PubMed Google Scholar
Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of FMRI Data. NMR in Biomedicine, 10, 171–178.
Article CAS PubMed Google Scholar
Durnez, J., Moerkerke, B., & Nichols, T. E. (2014). Post-hoc power estimation for topological inference in fMRI. NeuroImage, 84, 45–64.
Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., & Eickhoff, C. R. (2016). Behavior, Sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage, 137, 70–85.
Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation revisited. NeuroImage, 59, 2349–2361.
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907–2926.
Article PubMed PubMed Central Google Scholar
Fisher, R. A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).
Fox, P. T., Laird, A. R., Fox, S. P., Fox, P. M., Uecker, A. M., Crank, M., & Lancaster, J. L. (2005). Brainmap taxonomy of experimental design: description and evaluation. Human Brain Mapping, 25, 185–198.
Article PubMed PubMed Central Google Scholar
Fox, P. T., & Lancaster, J. L. (2002). Mapping context and content: The BrainMap model. Nature Reviews Neuroscience, 3, 319–321.
Article CAS PubMed Google Scholar
Friston, K. J., Stephan, K. E., Lund, T. E., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fMRI studies. NeuroImage, 24, 244–252.
Article CAS PubMed Google Scholar
Gorgolewski, K., Esteban, O., Schaefer, G., Wandell, B., & Poldrack, R. (2017). OpenNeuro—a free online platform for sharing and analysis of neuroimaging data (p. 1677). Vancouver, Canada: Organization for Human Brain Mapping.
Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotă, M., Chakravarty, M. M., & Poldrack, R. A. (2017). BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLOS Computational Biology, 13, 1–16.
Jennings, R. G., & Van Horn, J. D. (2012). Publication bias in neuroimaging research: implications for meta-analyses. Neuroinformatics, 10, 67–80.
Article PubMed PubMed Central Google Scholar
Kober, H., Barrette, L. F., Joseph, J., Bliss-Moreau, E., Lindquis, K., & Wager, T. D. (2008). Functional grouping and cortical-subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42, 998–1031.
Laird, A. R., Lancaster, J. J., & Fox, P. T. (2005). BrainMap: The social evolution of a functional neuroimaging database. Neuroinformatics, 3, 65–78.
Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical Science, 23, 439–464.
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.
Article CAS PubMed Google Scholar
Maumet, C., Auer, T., Bowring, A., Chen, G., Das, S., Flandin, G., & Nichols, T. G. (2016). Sharing brain mapping statistical results with the neuroimaging data model. Scientific Data, 3, 1–15.
Maumet C, & Nichols TE (2016). Minimal data needed for valid & accurate image-based fMRI meta-analysis. bioRxiv. https://doi.org/10.1101/048249
Mehta, R. K., & Parasuraman, R. (2013). Neuroergonomics: a review of applications to physical and cognitive work. Frontiers in human neuroscience, 7, 889. https://doi.org/10.3389/fnhum.2013.00889
Article PubMed PubMed Central Google Scholar
Mosteller, F., & Bush, R. R. (1954). Selected quantitative techniques. In G. Lindzey (Ed.), Handbook of social psychology (Vol. 1).
Müller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., & Eickhoff, S. B. (2018). Ten simple rules for neuroimaging meta-analysis. Neuroscience Biobehavioral Reviews, 84, 151–161. https://doi.org/10.1016/j.neubiorev.2017.11.012
Mumford, J. A., & Nichols, T. E. (2008). Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. NeuroImage, 39, 261–268.
Nichols, T. (2012). SPM PLOT UNITS. Retrieved from SPM PLOT UNITS: https://blog.nisox.org/2012/07/31/spm-plot-units/
Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, M., Yeo, B. T. (2016). Best Practices in Data Analysis and Sharing in Neuroimaging using MRI. bioRxiv. https://doi.org/10.1101/054262
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical parametric mapping: the analysis of functional brain images. Elsevier.
Pernet, C. (2014). Misconceptions in the use of the General Linear Model applied to functional MRI: A tutorial for junior neuro-imagers. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2014.00001
Article PubMed PubMed Central Google Scholar
Poldrack, R. A., Fletcher, P. C., Henson, R. N., Worsley, K. J., Brett. M., & Nichols, T. E. (2008). Guidelines for reporting an fMRI study. Neuroimage, 409–414.
Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., & Yarkoni, T. (2017). Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18, 115–126.
Article CAS PubMed PubMed Central Google Scholar
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive−compulsive disorder. The British Journal of Psychiatry, 195, 393–402.
Radua, J., & Mataix-Cols, D. (2012). Meta-analytic methods for neuroimaging data explained. Biology of Mood & Anxiety Disorders, 2, 1–11.
Radua, J., van den Heuvel, O. A., Surguladze, S., & Mataix-Cols, D. (2010). Meta-analytical comparison of voxel-based morphometry studies in obsessive compulsive disorder vs other anxiety disorders. Archives of General Psychiatry, 67, 701–711.
Radua, J., Mataix-Cols, D., Phillips, M. L., El-hage, W., Kronhaus, D. M., Cardoner, N., & Surguladze, S. (2012). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27, 605–611.
Article CAS PubMed Google Scholar
Radua, J., Rubia, K., Canales-Rodríguez, E. J., Pomarol-Clotet, E., Fusar-Poli, P., & Mataix-Cols, D. (2014). Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Frontiers in Psychiatry, 5, 1–8.
Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45, 810–823.
Salo, T., Yarkoni, T., Nichols, T. E., Poline, J-B., Bilgel, M., Bottenhorn, K. L., Jarecka, D., Kent, J. D., Kimbler, A., Nielson, D. M., Oudyk, K. M., Peraza, J. A., Pérez, A., Reeders, P. C., Yanes, J. A., & Laird, A. R. (2022). NiMARE: Neuroimaging meta-analysis research. NeuroLibre. https://doi.org/10.55458/neurolibre.00007
Stouffer, S. A., Suchman, E. A., Devinney, L. C., Star, S. A., & Williams, R. M., Jr. (1949). The American soldier, Vol. 1: Adjustment during army life. Princeton: Princeton University Press.
Sutton, A. J., Jones, K. R., Abrams, D. R., Sheldon, T. A., & Song, F. (2000). Methods for meta-analysis in medical research. John Wiley.
Szucs, D. A. (2020). Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage. https://doi.org/10.1016/j.neuroimage.2020.117164
Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage, 16, 765–780.
Comments (0)