Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA)

Aribisala, B. S., Morris, Z., Eadie, E., Thomas, A., Gow, A., Valdés Hernández, M. C., et al. (2014). Blood pressure, internal carotid artery flow parameters, and age-related white matter hyperintensities. Hypertension, 63, 1011–1018.

Article  CAS  PubMed  Google Scholar 

Arts, T., Siero, J. C. W., Biessels, G. J., & Zwanenburg, J. J. M. (2021). Automated assessment of cerebral arterial perforator function on 7t mri. Journal of Magnetic Resonance Imaging, 53, 234–241.

Article  PubMed  Google Scholar 

Arts, T., Meijs, T. A., Grotenhuis, H., Voskuil, M., Siero, J., Biessels, G. J., et al. (2021). Velocity and pulsatility measures in the perforating arteries of the basal ganglia at 3t mri in reference to 7t mri. Frontiers in Neuroscience, 15, 665480.

Article  PubMed  PubMed Central  Google Scholar 

Birnefeld, J., Wåhlin, A., Eklund, A., & Malm, J. (2020). Cerebral arterial pulsatility is associated with features of small vessel disease in patients with acute stroke and tia: A 4d flow mri study. Journal of Neurology., 267, 721–730.

Article  CAS  PubMed  Google Scholar 

Björnfot, C., Eklund, A., Larsson, J., Hansson, W., Birnefeld, J., Garpebring, A., et al. (2024). Cerebral arterial stiffness is linked to white matter hyperintensities and perivascular spaces in older adults – a 4d flow mri study. Journal of Cerebral Blood Flow & Metabolism., 44, 1343–1351.

Article  Google Scholar 

Bouvy, W. H., Geurts, L. J., Kuijf, H. J., Luijten, P. R., Kappelle, L. J., Biessels, G. J., et al. (2016). Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-t quantitative flow mri. NMR in Biomedicine, 29, 1295–1304.

Article  CAS  PubMed  Google Scholar 

Van Den Brink, H., Pham, S., Siero, J., Arts, T., Onkenhout, L., Kuijf, H., Hendrikse, J., Wardlaw, J., Dichgans, M., Zwanenburg, J., Biessels, G. J. (2024) Assessment of Small Vessel Function Using 7T MRI in Patients With Sporadic Cerebral Small Vessel Disease: The ZOOM@SVDs Study. Neurology, 102(5)

Chengyue, S., Yue, W., Chen, L., Zhiying, X., Yunchuang, S., Zhihao, X., et al. (2022). Reduced blood flow velocity in lenticulostriate arteries of patients with cadasil assessed by pc-mra at 7t. Journal of Neurology, Neurosurgery & Psychiatry., 93, 451.

Article  Google Scholar 

Chuang, S.-Y., Cheng, H.-M., Bai, C.-H., Yeh, W.-T., Chen, J.-R., & Pan, W.-H. (2016). Blood pressure, carotid flow pulsatility, and the risk of stroke. Stroke, 47, 2262–2268.

Article  PubMed  Google Scholar 

Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment., 6, 284–290.

Article  Google Scholar 

Conturo, T. E., & Smith, G. D. (1990). Signal-to-noise in phase angle reconstruction: Dynamic range extension using phase reference offsets. Magnetic Resonance in Medicine., 15, 420–437.

Article  CAS  PubMed  Google Scholar 

Düzel, E., Acosta-Cabronero, J., Berron, D., Biessels, G. J., Björkman-Burtscher, I., Bottlaender, M., et al. (2019). European ultrahigh-field imaging network for neurodegenerative diseases (eufind). Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring., 11, 538–549.

Google Scholar 

Geurts, L., Biessels, G. J., Luijten, P., & Zwanenburg, J. (2018). Better and faster velocity pulsatility assessment in cerebral white matter perforating arteries with 7t quantitative flow mri through improved slice profile, acquisition scheme, and postprocessing. Magnetic Resonance in Medicine, 79, 1473–1482.

Article  PubMed  Google Scholar 

Karakuzu, A., Biswas, L., Cohen-Adad, J., & Stikov, N. (2022). Vendor-neutral sequences and fully transparent workflows improve inter-vendor reproducibility of quantitative <scp>mri</scp>. Magnetic Resonance in Medicine., 88, 1212–1228.

Article  PubMed  Google Scholar 

Köhler, B., Born, S., Van Pelt, R. F. P., Hennemuth, A., Preim, U., & Preim, B. (2017). A survey of cardiac 4d pc-mri data processing. Computer Graphics Forum., 36, 5–35.

Article  Google Scholar 

Köhler, B., Grothoff, M., Gutberlet, M., & Preim, B. (2019). Bloodline: A system for the guided analysis of cardiac 4d pc-mri data. Computers & Graphics., 82, 32–43.

Article  Google Scholar 

Ma, S. J., Sarabi, M. S., Yan, L., Shao, X., Chen, Y., Yang, Q., et al. (2019). Characterization of lenticulostriate arteries with high resolution black-blood t1-weighted turbo spin echo with variable flip angles at 3 and 7 tesla. NeuroImage, 199, 184–193.

Article  PubMed  Google Scholar 

Mitchell, G. F., Van Buchem, M. A., Sigurdsson, S., Gotal, J. D., Jonsdottir, M. K., Kjartansson, Ó., et al. (2011). Arterial stiffness, pressure and flow pulsatility and brain structure and function: The age, gene/environment susceptibility – reykjavik study. Brain, 134, 3398–3407.

Article  PubMed  PubMed Central  Google Scholar 

Moore, J., Jimenez, J., Lin, W., Powers, W., & Zong, X. (2022). Prospective motion correction and automatic segmentation of penetrating arteries in phase contrast <scp>mri</scp> at 7 t. Magnetic Resonance in Medicine., 88, 2088–2100.

Article  PubMed  Google Scholar 

O’Rourke, M. F., & Hashimoto, J. (2007). Mechanical factors in arterial aging: A clinical perspective. Journal of the American College of Cardiology, 50, 1–13.

Article  PubMed  Google Scholar 

Perosa, V., Arts, T., Assmann, A., Mattern, H., Speck, O., Oltmer, J., et al. (2022). Pulsatility index in the basal ganglia arteries increases with age in elderly with and without cerebral small vessel disease. American Journal of Neuroradiology., 43, 540–546.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poels, M. M. F., Zaccai, K., Verwoert, G. C., Vernooij, M. W., Hofman, A., Van Der Lugt, A., et al. (2012). Arterial stiffness and cerebral small vessel disease. Stroke, 43, 2637–2642.

Article  PubMed  Google Scholar 

Rivera-Rivera, L. A., Schubert, T., Turski, P., Johnson, K. M., Berman, S. E., Rowley, H. A., et al. (2017). Changes in intracranial venous blood flow and pulsatility in alzheimer’s disease: A 4d flow mri study. Journal of Cerebral Blood Flow & Metabolism., 37, 2149–2158.

Article  Google Scholar 

Roberts, G. S., Hoffman, C. A., Rivera-Rivera, L. A., Berman, S. E., Eisenmenger, L. B., & Wieben, O. (2023). Automated hemodynamic assessment for cranial 4d flow mri. Magnetic Resonance Imaging., 97, 46–55.

Article  PubMed  Google Scholar 

Schnerr, R. S,. Jansen, J. F. A., Uludag, K., Hofman, P. A. M., Wildberger, J. E., Van Oostenbrugge, R. J., et al. (2017). Pulsatility of lenticulostriate arteries assessed by 7 tesla flow mri—measurement, reproducibility, and applicability to aging effect. Frontiers in Physiology, 8

Singer, J., Trollor, J. N., Baune, B. T., Sachdev, P. S., & Smith, E. (2014). Arterial stiffness, the brain and cognition: A systematic review. Ageing Research Reviews, 15, 16–27.

Article  PubMed  Google Scholar 

Tong, G., Gaspar, A. S., Qian, E., Ravi, K. S., Vaughan, J. T., Nunes, R. G., et al. (2022). A framework for validating open-source pulse sequences. Magnetic Resonance Imaging., 87, 7–18.

Article  PubMed  Google Scholar 

van den Brink, H., Kopczak, A., Arts, T., Onkenhout, L., Siero, J. C. W., Zwanenburg, J. J. M., et al. (2023). Cadasil affects multiple aspects of cerebral small vessel function on 7t-mri. Annals of Neurology, 93, 29–39.

Article  PubMed  Google Scholar 

van den Kerkhof, M., Jansen, J. F. A., van Oostenbrugge, R. J., & Backes, W. H. (2023b). 1d versus 3d blood flow velocity and pulsatility measurements of lenticulostriate arteries at 7t mri. Magnetic Resonance Imaging., 96, 144–150.

Article  PubMed  Google Scholar 

Van Den Kerkhof, M., Van Der Thiel, M. M., Van Oostenbrugge, R. J., Postma, A. A., Kroon, A. A., Backes, W. H., et al. (2023). Impaired damping of cerebral blood flow velocity pulsatility is associated with the number of perivascular spaces as measured with 7t mri. Journal of Cerebral Blood Flow & Metabolism., 43, 937–946.

Article  Google Scholar 

van Hespen, K. M., Kuijf, H. J., Hendrikse, J., Luijten, P. R., & Zwanenburg, J. J. M. (2022). Blood flow velocity pulsatility and arterial diameter pulsatility measurements of the intracranial arteries using 4d pc-mri. Neuroinformatics, 20, 317–326.

Article  PubMed  Google Scholar 

van Tuijl, R. J., Ruigrok, Y. M., Velthuis, B. K., van der Schaaf, I. C., Rinkel, G. J. E., & Zwanenburg, J. J. M. (2020). Velocity pulsatility and arterial distensibility along the internal carotid artery. Journal of the American Heart Association, 9, e016883.

Article  PubMed  PubMed Central  Google Scholar 

Van Sloten, T. T., Protogerou, A. D., Henry, R. M. A., Schram, M. T., Launer, L. J., & Stehouwer, C. D. A. (2015). Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews., 53, 121–130.

Article  Google Scholar 

Van Tuijl, R. J., Pham, S. D. T., Ruigrok, Y. M., Biessels, G. J., Velthuis, B. K., & Zwanenburg, J. J. M. (2022). Reliability of velocity pulsatility in small vessels on 3tesla mri in the basal ganglia: A test–retest study. Magnetic Resonance Materials in Physics, Biology and Medicine., 36, 15–23.

Article  Google Scholar 

Vikner, T., Nyberg, L., Holmgren, M., Malm, J., Eklund, A., & Wahlin, A. (2020). Characterizing pulsatility in distal cerebral arteries using 4d flow mri. Journal of Cerebral Blood Flow and Metabolism, 40, 2429–2440.

Article  PubMed  Google Scholar 

Wardlaw, J. M., Smith, C., & Dichgans, M. (2019). Small vessel disease: Mechanisms and clinical implications. Lancet Neurology, 18, 684–696.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif