Agarwal, P., Farooqi, N., Gupta, A., Mehta, S., & Khandelwal, S. (2021, August). A New Harris Hawk Whale Optimization Algorithm for Enhancing Neural Networks. In 2021 Thirteenth International Conference on Contemporary Computing (IC3–2021) (pp. 179–186).
Agrawal, P., Katal, N., & Hooda, N. (2022). Segmentation and classification of brain tumor using 3D-UNet deep neural networks. International Journal of Cognitive Computing in Engineering, 3, 199–210.
Ahmad, P., Qamar, S., Shen, L., & Saeed, A. (2021). Context aware 3D UNet for brain tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part I 6 (pp. 207–218). Springer International Publishing.
Ahmad, P., Qamar, S., Shen, L., Rizvi, S. Q. A., Ali, A., & Chetty, G. (2021b). MS UNet: Multi-scale 3D UNet for Brain Tumor Segmentation. International MICCAI Brainlesion Workshop (pp. 30–41). Springer International Publishing.
Ahmad, S., & Choudhury, P. K. (2022). On the performance of deep transfer learning networks for brain tumor detection using MR images. IEEE Access, 10, 59099–59114.
Ali, T. M., Nawaz, A., Ur Rehman, A., Ahmad, R. Z., Javed, A. R., Gadekallu, T. R., ... & Wu, C. M. (2022). A sequential machine learning-cum-attention mechanism for effective segmentation of brain tumor. Frontiers in Oncology, 12, 873268.
Anand, V. K., Grampurohit, S., Aurangabadkar, P., Kori, A., Khened, M., Bhat, R. S., & Krishnamurthi, G. (2021). Brain tumor segmentation and survival prediction using automatic hard mining in 3D CNN architecture. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6 (pp. 310–319). Springer International Publishing.
Badjie, B., & Ülker, E. D. (2022). A Deep Transfer Learning Based Architecture for Brain Tumor Classification Using MR Images. Information Technology and Control, 51(2), 332–344.
Çetiner, H., & Metlek, S. (2023). DenseUNet+: A novel hybrid segmentation approach based on multi-modality images for brain tumor segmentation. Journal of King Saud University-Computer and Information Sciences, 35(8), 101663.
Cheng, J., Yang, W., Huang, M., Huang, W., Jiang, J., Zhou, Y., ... & Chen, W. (2016). Retrieval of brain tumors by adaptive spatial pooling and fisher vector representation. PloS one, 11(6), e0157112.
Çinar, A., & Yildirim, M. (2020). Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Medical Hypotheses, 139, 109684.
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. R., & Xu, D. (2021, September). Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In International MICCAI Brainlesion Workshop (pp. 272–284). Cham: Springer International Publishing.
Isensee, F., Jäger, P. F., Full, P. M., Vollmuth, P., & Maier-Hein, K. H. (2021). nnU-Net for brain tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6 (pp. 118–132). Springer International Publishing.
Jabbar, A., Naseem, S., Mahmood, T., Saba, T., Alamri, F. S., & Rehman, A. (2023). Brain tumor detection and multi-grade segmentation through hybrid caps-VGGNet model. IEEE Access, 11, 72518–72536.
Jia, H., Bai, C., Cai, W., Huang, H., & Xia, Y. (2021, September). HNF-Netv2 for brain tumor segmentation using multi-modal MR imaging. In International MICCAI Brainlesion Workshop (pp. 106–115). Cham: Springer International Publishing.
Jia, Z., Zhu, H., Zhu, J., & Ma, P. (2023). Two-branch network for brain tumor segmentation using attention mechanism and super-resolution reconstruction. Computers in Biology and Medicine, 157, 106751.
Jiang, Y., Zhang, Y., Lin, X., Dong, J., Cheng, T., & Liang, J. (2022). SwinBTS: A method for 3D multimodal brain tumor segmentation using swin transformer. Brain Sciences, 12(6), 797.
Article PubMed PubMed Central Google Scholar
Kataria, J., & Panda, S. P. (2024). HybridCSF model for magnetic resonance image based brain tumor segmentation. Indonesian Journal of Electrical Engineering and Computer Science, 35(3), 1845–1852.
Kumar, S., Dabas, C., & Godara, S. (2017). Classification of brain MRI tumor images: A hybrid approach. Procedia Computer Science, 122, 510–517.
Li, H., Nan, Y., & Yang, G. (2022, July). LKAU-Net: 3D large-kernel attention-based u-net for automatic MRI brain tumor segmentation. In Annual conference on medical image understanding and analysis (pp. 313–327). Cham: Springer International Publishing.
Liu, D., Sheng, N., He, T., Wang, W., Zhang, J., & Zhang, J. (2022). SGEResU-Net for brain tumor segmentation. Mathematical Biosciences and Engineering, 19(6), 5576–5590.
Lu, D., Xie, Q., Gao, K., Xu, L., & Li, J. (2022). 3DCTN: 3D convolution-transformer network for point cloud classification. IEEE Transactions on Intelligent Transportation Systems, 23(12), 24854–24865.
Metlek, S., & Çetıner, H. (2023). ResUNet+: A new convolutional and attention block-based approach for brain tumor segmentation. IEEE Access.
Miller, K. D., Ostrom, Q. T., Kruchko, C., Patil, N., Tihan, T., Cioffi, G., ... & Barnholtz‐Sloan, J. S. (2021). Brain and other central nervous system tumor statistics, 2021. CA: a cancer journal for clinicians, 71(5), 381–406.
Mostafa, A. M., Zakariah, M., & Aldakheel, E. A. (2023). Brain tumor segmentation using deep learning on MRI images. Diagnostics, 13(9), 1562.
Article PubMed PubMed Central Google Scholar
Nguyen-Tat, T. B., Nguyen, T. Q. T., Nguyen, H. N., & Ngo, V. M. (2024). Enhancing brain tumor segmentation in MRI images: A hybrid approach using UNet, attention mechanisms, and transformers. Egyptian Informatics Journal, 27, 100528.
Peiris, H., Chen, Z., Egan, G., & Harandi, M. (2021). Reciprocal adversarial learning for brain tumor segmentation: A solution to BraTS challenge 2021 segmentation task. International MICCAI Brainlesion Workshop (pp. 171–181). Springer International Publishing.
Peng, Y., & Sun, J. (2023). The multimodal MRI brain tumor segmentation based on AD-Net. Biomedical Signal Processing and Control, 80, 104336.
Polat, Ö., & Güngen, C. (2021). Classification of brain tumors from MR images using deep transfer learning. The Journal of Supercomputing, 77(7), 7236–7252.
Rajesh, M. N., & Chandrasekar, B. S. Denoising and enhancement of prostate MRI image using a hybrid wiener-median filter.
Ranjbarzadeh, R., Zarbakhsh, P., Caputo, A., Tirkolaee, E. B., & Bendechache, M. (2024). Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm. Computers in Biology and Medicine, 168, 107723.
Razzak, M. I., Imran, M., & Xu, G. (2018). Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks. IEEE Journal of Biomedical and Health Informatics, 23(5), 1911–1919.
Saeed, M. U., Ali, G., Bin, W., Almotiri, S. H., AlGhamdi, M. A., Nagra, A. A., ... & Amin, R. U. (2021). RMU-net: a novel residual mobile U-net model for brain tumor segmentation from MR images. Electronics, 10(16), 1962.
Siddiquee, M. M. R., & Myronenko, A. (2021). Redundancy reduction in semantic segmentation of 3D brain tumor MRIS. arXiv preprint arXiv:2111.00742.
Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: a Cancer Journal for Clinicians, 68(1), 7–30.
Silva, C. A., Pinto, A., Pereira, S., & Lopes, A. (2021). Multi-stage deep layer aggregation for brain tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6 (pp. 179–188). Springer International Publishing.
Singh, S., Singh, B. K., & Kumar, A. (2022). Magnetic resonance imaging image-based segmentation of brain tumor using the modified transfer learning method. Journal of Medical Physics, 47(4), 315.
Swati, Z. N. K., Zhao, Q., Kabir, M., Ali, F., Ali, Z., Ahmed, S., & Lu, J. (2019). Content-based brain tumor retrieval for MR images using transfer learning. IEEE Access, 7, 17809–17822.
Tandel, G. S., Biswas, M., Kakde, O. G., Tiwari, A., Suri, H. S., Turk, M., ... & Suri, J. S. (2019). A review on a deep learning perspective in brain cancer classification. Cancers, 11(1), 111.
Toğaçar, M., Cömert, Z., & Ergen, B. (2020). Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method. Expert Systems with Applications, 149, 113274.
Ullah, N., Khan, M. S., Khan, J. A., Choi, A., & Anwar, M. S. (2022a). A robust end-to-end deep learning-based approach for effective and reliable BTD using MR images. Sensors, 22(19), 7575.
Article PubMed PubMed Central Google Scholar
Ullah, Z., Usman, M., Jeon, M., & Gwak, J. (2022b). Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation. Information Sciences, 608, 1541–1556.
Vijay, S., Guhan, T., Srinivasan, K., Vincent, P. D. R., & Chang, C. Y. (2023). MRI brain tumor segmentation using residual Spatial Pyramid Pooling-powered 3D U-Net. Frontiers in Public Health, 11, 1091850.
Article PubMed PubMed Central Google Scholar
Wang, C., Wu, B., Wu, Y., Song, X., Zhang, S., & Liu, Z. (2020). Camouflaging nanoparticles with brain metastatic tumor cell membranes: A new strategy to traverse blood–brain barrier for imaging and therapy of brain tumors. Advanced Functional Materials, 30(14), 1909369.
Yousef, R., Khan, S., Gupta, G., Albahlal, B. M., Alajlan, S. A., & Ali, A. (2023). Bridged-U-Net-ASPP-EVO and deep learning optimization for brain tumor segmentation. Diagnostics, 13(16), 2633.
Article PubMed PubMed Central Google Scholar
Zhao, L., Ma, J., Shao, Y., Jia, C., Zhao, J., & Yuan, H. (2022). MM-UNet: A multimodality brain tumor segmentation network in MRI images. Frontiers in Oncology, 12, 950706.
Comments (0)