Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57. https://doi.org/10.1056/NEJMoa1812389.
Article CAS PubMed Google Scholar
Cefalu WT, Kaul S, Gerstein HC, et al. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a diabetes care editors' expert forum. Diabetes Care. 2018;41(1):14–31. https://doi.org/10.2337/dci17-0057.
Article CAS PubMed Google Scholar
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303.
Article CAS PubMed Google Scholar
Inzucchi SE, Claggett BL, Vaduganathan M, et al. Efficacy and safety of dapagliflozin in patients with heart failure with mildly reduced or preserved ejection fraction by baseline glycaemic status (DELIVER): a subgroup analysis from an international, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2022;10(12):869–81. https://doi.org/10.1016/S2213-8587(22)00308-4.
Article CAS PubMed Google Scholar
Joubert M, Jagu B, Montaigne D, et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes. 2017;66(4):1030–40. https://doi.org/10.2337/db16-0733.
Article CAS PubMed Google Scholar
Arow M, Waldman M, Yadin D, et al. Sodium-glucose cotransporter 2 inhibitor dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol. 2020;19(1):7. https://doi.org/10.1186/s12933-019-0980-4.
Article CAS PubMed PubMed Central Google Scholar
Saleh S, Hanna G, El-Nabi SH, et al. Dapagliflozin, a sodium glucose cotransporter 2 inhibitors, protects cardiovascular function in type-2 diabetic murine model. J Genet. 2020;99:1–8. https://doi.org/10.1007/s12041-020-01196-9.
Olgar Y, Turan B. A sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin comparison with insulin shows important effects on Zn(2+)-transporters in cardiomyocytes from insulin-resistant metabolic syndrome rats through inhibition of oxidative stress. Can J Physiol Pharmacol. 2019;97(6):528–35. https://doi.org/10.1139/cjpp-2018-0466.
Article CAS PubMed Google Scholar
Shi L, Zhu D, Wang S, Jiang A, Li F. Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload. Am J Hypertens. 2019;32(5):452–9. https://doi.org/10.1093/ajh/hpz016.
Article CAS PubMed Google Scholar
Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 Inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further Augmentation of the Effects with Saxagliptin, a DPP4 Inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–32. https://doi.org/10.1007/s10557-017-6725-2.
Article CAS PubMed Google Scholar
Chen H, Tran D, Yang HC, et al. Dapagliflozin and ticagrelor have additive effects on the attenuation of the activation of the NLRP3 inflammasome and the progression of diabetic cardiomyopathy: an AMPK-mTOR interplay. Cardiovasc Drugs Ther. 2020;34(4):443–61. https://doi.org/10.1007/s10557-020-06978-y.
Article CAS PubMed Google Scholar
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article CAS PubMed Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article CAS PubMed PubMed Central Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.
Mak TW, Hauck L, Grothe D, Billia F. p53 regulates the cardiac transcriptome. Proc Natl Acad Sci USA. 2017;114(9):2331–6. https://doi.org/10.1073/pnas.1621436114.
Article CAS PubMed PubMed Central Google Scholar
Croteau D, Luptak I, Chambers JM, et al. Effects of sodium-glucose linked transporter 2 inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice. J Am Heart Assoc. 2021;10(13):e019995. https://doi.org/10.1161/JAHA.120.019995.
Article CAS PubMed PubMed Central Google Scholar
Zhang S, Liu H, Amarsingh GV, et al. Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol. 2014;13:100. https://doi.org/10.1186/1475-2840-13-100.
Article CAS PubMed PubMed Central Google Scholar
Uthman L, Kuschma M, Romer G, et al. Novel anti-inflammatory effects of canagliflozin involving hexokinase II in lipopolysaccharide-stimulated human coronary artery endothelial cells. Cardiovasc Drugs Ther. 2021;35(6):1083–94. https://doi.org/10.1007/s10557-020-07083-w.
Article CAS PubMed Google Scholar
Nair V, Schaub J, Alakwaa F, et al. WCN23-0761 SGLT2 inhibitor treatment may enhance kidney oxygenation and attenuate HIF1a expression in young persons with type 2 diabetes. Kindney Int Rep. 2023;8(3):S197–S8. https://doi.org/10.1016/j.ekir.2023.02.439.
Nagatomo Y, Meguro T, Ito H, et al. Significance of AT1 receptor independent activation of mineralocorticoid receptor in murine diabetic cardiomyopathy. PLoS One. 2014;9(3):e93145. https://doi.org/10.1371/journal.pone.0093145.
Article CAS PubMed PubMed Central Google Scholar
Chao PC, Hsu CC, Yin MC. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab (Lond). 2009;6:33. https://doi.org/10.1186/1743-7075-6-33.
Article CAS PubMed PubMed Central Google Scholar
Mushtaq I, Bashir Z, Sarwar M, et al. N-acetyl cysteine, selenium, and ascorbic acid rescue diabetic cardiac hypertrophy via mitochondrial-associated redox regulators. Molecules. 2021;26(23) https://doi.org/10.3390/molecules26237285.
Kain V, Kumar S, Sitasawad SL. Azelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis. Cardiovasc Diabetol. 2011;10:97. https://doi.org/10.1186/1475-2840-10-97.
Article CAS PubMed PubMed Central Google Scholar
Ding W, Chang WG, Guo XC, et al. Exenatide protects against cardiac dysfunction by attenuating oxidative stress in the diabetic mouse heart. Front Endocrinol (Lausanne). 2019;10:202. https://doi.org/10.3389/fendo.2019.00202.
Article PubMed PubMed Central Google Scholar
Cotrin JC, de Souza GSM, Petito-da-Silva TI, et al. Empagliflozin alleviates left ventricle hypertrophy in high-fat-fed mice by modulating renin angiotensin pathway. J Renin Angiotensin Aldosterone Syst. 2022;2022:8861911. https://doi.org/10.1155/2022/8861911.
Article CAS PubMed PubMed Central Google Scholar
Oshima H, Miki T, Kuno A, et al. Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats. J Pharmacol Exp Ther. 2019;368(3):524–34. https://doi.org/10.1124/jpet.118.253666.
Article CAS PubMed Google Scholar
Nabrdalik-Lesniak D, Nabrdalik K, Sedlaczek K, et al. Influence of SGLT2 inhibitor treatment on urine antioxidant status in type 2 diabetic patients: a pilot study. Oxid Med Cell Longev. 2021;2021:5593589. https://doi.org/10.1155/2021/5593589.
Article CAS PubMed PubMed Central Google Scholar
Xue W, Liu Y, Zhao J, et al. Activation of HIF-1 by metallothionein contributes to cardiac protection in the diabetic heart. Am J Physiol Heart Circ Physiol. 2012;302(12):H2528–35. https://doi.org/10.1152/ajpheart.00850.2011.
Article CAS PubMed Google Scholar
Kim S, Jo CH, Kim GH. Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertens Res. 2019;42(12):1905–15. https://doi.org/10.1038/s41440-019-0326-3.
Article CAS PubMed PubMed Central Google Scholar
Bessho R, Takiyama Y, Takiyama T, et al. Hypoxia-inducible factor-1alpha is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep. 2019;9(1):14754. https://doi.org/10.1038/s41598-019-51343-1.
Article CAS PubMed PubMed Central Google Scholar
Ghanim H, Abuaysheh S, Hejna J, et al. Dapagliflozin suppresses hepcidin and increases erythropoiesis. J Clin Endocrinol Metab. 2020;105(4) https://doi.org/10.1210/clinem/dgaa057.
Peake BF, Nicholson CK, Lambert JP, et al. Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner. Am J Physiol Heart Circ Physiol. 2013;304(9):H1215–24. https://doi.org/10.1152/ajpheart.00796.2012.
Article CAS PubMed PubMed Central Google Scholar
Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15. https://doi.org/10.1186/s12933-019-0816-2.
Comments (0)