Hyperoside Protects Trastuzumab-Induced Cardiotoxicity via Activating the PI3K/Akt Signaling Pathway

Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

Article  CAS  PubMed  Google Scholar 

Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

Article  CAS  PubMed  Google Scholar 

Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

Article  CAS  PubMed  Google Scholar 

Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

Article  CAS  Google Scholar 

Piccart M, Procter M, Fumagalli D, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY Trial: 6 years' follow-up. J Clin Oncol. 2021;39(13):1448–57.

Article  CAS  PubMed  Google Scholar 

Rosa GM, Gigli L, Tagliasacchi MI, et al. Update on cardiotoxicity of anti-cancer treatments. Eur J Clin Invest. 2016;46(3):264–84.

Article  PubMed  Google Scholar 

Guglin M, Krischer J, Tamura R, et al. Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J Am Coll Cardiol. 2019;73(22):2859–68.

Article  CAS  PubMed  Google Scholar 

Moja L, Tagliabue L, Balduzzi S, et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev. 2012;2012(4):Cd006243.

PubMed  PubMed Central  Google Scholar 

Vermeulen Z, Segers VF, De Keulenaer GW. ErbB2 signaling at the crossing between heart failure and cancer. Basic Res Cardiol. 2016;111(6):60.

Article  PubMed  PubMed Central  Google Scholar 

Jiang Z, Zhou M. Neuregulin signaling and heart failure. Curr Heart Fail Rep. 2010;7(1):42–7.

Article  CAS  PubMed  Google Scholar 

Rupert CE, Coulombe KL. The roles of neuregulin-1 in cardiac development, homeostasis, and disease. Biomark Insights. 2015;10(Suppl 1):1–9.

CAS  PubMed  PubMed Central  Google Scholar 

Leemasawat K, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Mechanisms and potential interventions associated with the cardiotoxicity of ErbB2-targeted drugs: insights from in vitro, in vivo, and clinical studies in breast cancer patients. Cell Mol Life Sci. 2020;77(8):1571–89.

Article  CAS  PubMed  Google Scholar 

Guglin M, Munster P, Fink A, Krischer J. Lisinopril or Coreg CR in reducing cardiotoxicity in women with breast cancer receiving trastuzumab: a rationale and design of a randomized clinical trial. Am Heart J. 2017;188:87–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu G, Zhang J, Sun F, Ma J, Qi X. Ginsenoside Rg2 Attenuated Trastuzumab-Induced Cardiotoxicity in Rats. Biomed Res Int. 2022;2022:8866660.

PubMed  PubMed Central  Google Scholar 

Li G, Zhu F, Wei P, et al. Metabolic Engineering of Escherichia coli for Hyperoside Biosynthesis. Microorganisms. 2022;10(3). https://doi.org/10.3390/microorganisms10030628.

He S, Yin X, Wu F, et al. Hyperoside protects cardiomyocytes against hypoxia-induced injury via upregulation of microRNA-138. Mol Med Rep. 2021;23(4). https://doi.org/10.3892/mmr.2021.11925.

Yang Y, Li J, Rao T, Fang Z, Zhang J. The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway. J Ethnopharmacol. 2021;276:114187.

Article  CAS  PubMed  Google Scholar 

Wei S, Xiao Z, Huang J, et al. Disulfiram inhibits oxidative stress and NLRP3 inflammasome activation to prevent LPS-induced cardiac injury. Int Immunopharmacol. 2022;105:108545.

Article  CAS  PubMed  Google Scholar 

Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117(6):1450–88.

Article  CAS  PubMed  Google Scholar 

Andjelković M, Maira SM, Cron P, Parker PJ, Hemmings BA. Domain swapping used to investigate the mechanism of protein kinase B regulation by 3-phosphoinositide-dependent protein kinase 1 and Ser473 kinase. Mol Cell Biol. 1999;19(7):5061–72.

Article  PubMed  PubMed Central  Google Scholar 

Jordan JH, Todd RM, Vasu S, Hundley WG. Cardiovascular magnetic resonance in the oncology patient. JACC Cardiovasc Imaging. 2018;11(8):1150–72.

Article  PubMed  Google Scholar 

Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.

Article  CAS  PubMed  Google Scholar 

Zardavas D, Suter TM, Van Veldhuisen DJ, et al. Role of troponins I and T and N-terminal prohormone of brain natriuretic peptide in monitoring cardiac safety of patients with early-stage human epidermal growth factor receptor 2-positive breast cancer receiving trastuzumab: a herceptin adjuvant study cardiac marker substudy. J Clin Oncol. 2017;35(8):878–84.

Article  CAS  PubMed  Google Scholar 

Morris PG, Chen C, Steingart R, et al. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin Cancer Res. 2011;17(10):3490–9.

Article  CAS  PubMed  Google Scholar 

Putt M, Hahn VS, Januzzi JL, et al. Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. Clin Chem. 2015;61(9):1164–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geissler A, Ryzhov S, Sawyer DB. Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond). 2020;134(19):2623–43.

Article  CAS  PubMed  Google Scholar 

Lemmens K, Doggen K, De Keulenaer GW. Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation. 2007;116(8):954–60.

Article  CAS  PubMed  Google Scholar 

Guo J, Dai X, Laurent B, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21(2):226–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, Wei HC, Zhou SJ, et al. Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytother Res. 2022;36(7):2779–802.

Article  CAS  PubMed  Google Scholar 

Charachit N, Sukhamwang A, Dejkriengkraikul P, Yodkeeree S. Hyperoside and quercitrin in houttuynia cordata extract attenuate UVB-induced human keratinocyte cell damage and oxidative stress via modulation of MAPKs and Akt signaling pathway. Antioxidants (Basel). 2022;11(2). https://doi.org/10.3390/antiox11020221.

Fan S, Pan H, Huang J, Lei Z, Liu J. Hyperoside exerts osteoprotective effect on dexamethasone-induced osteoblasts by targeting NADPH Oxidase 4 (NOX4) to inhibit the reactive oxygen species (ROS) accumulation and activate c-Jun N-terminal kinase (JNK) pathway. Bioengineered. 2022;13(4):8657–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing H, Fu R, Cheng C, et al. Hyperoside protected against oxidative stress-induced liver injury via the PHLPP2-AKT-GSK-3β signaling pathway in vivo and in vitro. Front Pharmacol. 2020;11:1065.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ElZarrad MK, Mukhopadhyay P, Mohan N, et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One. 2013;8(11):e79543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon LI, Burke MA, Singh AT, et al. Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways. J Biol Chem. 2009;284(4):2080–7.

Article  CAS  PubMed  Google Scholar 

Wang X, Li W, Zhang Y, et al. Calycosin as a novel PI3K activator reduces inflammation and fibrosis in heart failure through AKT-IKK/STAT3 axis. Front Pharmacol. 2022;13:828061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shiraishi M, Yamaguchi A, Suzuki K. Nrg1/ErbB signaling-mediated regulation of fibrosis after myocardial infarction. Faseb j. 2022;36(2):e22150.

Article  CAS  PubMed  Google Scholar 

Zambrano J, Yeh ES. Autophagy and apoptotic crosstalk: mechanism of therapeutic resistance in HER2-positive breast cancer. Breast Cancer (Auckl). 2016;10:13–23.

CAS  PubMed  Google Scholar 

Mohan N, Shen Y, Endo Y, ElZarrad MK, Wu WJ. Trastuzumab, but not pertuzumab, dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human cardiomyocytes. Mol Cancer Ther. 2016;15(6):1321–31.

Article  CAS  PubMed  Google Scholar 

Xie S, Yang Y, Luo Z, et al. Role

留言 (0)

沒有登入
gif