The Interconnection Between Muscle and Bone: A Common Clinical Management Pathway

Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol (Bethesda, Md: 1985) 88(4):1321–6. https://doi.org/10.1152/jappl.2000.88.4.1321

Article  CAS  Google Scholar 

Pasco JA (2019) Age-related changes in muscle and bone. In: Dusque G (ed) Osteosarcopenia: bone, muscle and fat interactions. Springer, Cham, pp 45–71

Chapter  Google Scholar 

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169

Article  PubMed  Google Scholar 

Greendale GA, Sowers M, Han W, Huang MH, Finkelstein JS, Crandall CJ et al (2012) Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the study of women’s health across the nation (SWAN). J Bone Miner Res 27(1):111–118. https://doi.org/10.1002/jbmr.534

Article  PubMed  Google Scholar 

Zanker J, Sim M, Anderson K, Balogun S, Brennan-Olsen SL, Dent E et al (2022) Consensus guidelines for sarcopenia prevention, diagnosis and management in Australia and New Zealand. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.13115

Article  PubMed  PubMed Central  Google Scholar 

Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. https://doi.org/10.1007/s00198-014-2794-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141

Article  CAS  PubMed  Google Scholar 

Briggs AM, Cross MJ, Hoy DG, Sanchez-Riera L, Blyth FM, Woolf AD et al (2016) Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization world report on ageing and health. Gerontologist 56(Suppl 2):S243–S255. https://doi.org/10.1093/geront/gnw002

Article  PubMed  Google Scholar 

Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV et al (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61(10):1059–1064. https://doi.org/10.1093/gerona/61.10.1059

Article  PubMed  Google Scholar 

Kirk B, Zanker J, Duque G (2020) Osteosarcopenia: epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle 11(3):609–618. https://doi.org/10.1002/jcsm.12567

Article  PubMed  PubMed Central  Google Scholar 

Shimada H, Suzuki T, Doi T, Lee S, Nakakubo S, Makino K et al (2023) Impact of osteosarcopenia on disability and mortality among Japanese older adults. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.13209

Article  PubMed  PubMed Central  Google Scholar 

Atlihan R, Kirk B, Duque G (2021) Non-pharmacological interventions in osteosarcopenia: a systematic review. J Nutr Health Aging 25(1):25–32. https://doi.org/10.1007/s12603-020-1537-7

Article  CAS  PubMed  Google Scholar 

Kirk B, Feehan J, Lombardi G, Duque G (2020) Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 18(4):388–400. https://doi.org/10.1007/s11914-020-00599-y

Article  PubMed  Google Scholar 

Scott D, Johansson J, McMillan LB, Ebeling PR, Nordstrom P, Nordstrom A (2019) Associations of sarcopenia and its components with bone structure and incident falls in Swedish older adults. Calcif Tissue Int 105(1):26–36. https://doi.org/10.1007/s00223-019-00540-1

Article  CAS  PubMed  Google Scholar 

Kirk B, Phu S, Brennan-Olsen SL, Bani Hassan E, Duque G (2020) Associations between osteoporosis, the severity of sarcopenia and fragility fractures in community-dwelling older adults. Eur Geriatr Med 11(3):443–450. https://doi.org/10.1007/s41999-020-00301-6

Article  PubMed  Google Scholar 

Avin KG, Bloomfield SA, Gross TS, Warden SJ (2015) Biomechanical aspects of the muscle–bone interaction. Curr Osteoporos Rep 13(1):1–8. https://doi.org/10.1007/s11914-014-0244-x

Article  PubMed  PubMed Central  Google Scholar 

Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280(17):4294–4314. https://doi.org/10.1111/febs.12253

Article  CAS  PubMed  Google Scholar 

Ehrlich P, Lanyon L (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13(9):688–700. https://doi.org/10.1007/s001980200095

Article  CAS  PubMed  Google Scholar 

Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45(10):2200–2208. https://doi.org/10.1016/j.biocel.2013.06.011

Article  CAS  PubMed  Google Scholar 

Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P et al (2005) Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36(6):1019–1029. https://doi.org/10.1016/j.bone.2004.11.014

Article  PubMed  Google Scholar 

Pierre N, Appriou Z, Gratas-Delamarche A, Derbré F (2016) From physical inactivity to immobilization: dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy. Free Radic Biol Med 98:197–207. https://doi.org/10.1016/j.freeradbiomed.2015.12.028

Article  CAS  PubMed  Google Scholar 

Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ (2021) Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 7(1):28. https://doi.org/10.1038/s41526-021-00158-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu TW, Taylor SJ, O’Connor JJ, Walker PS (1997) Influence of muscle activity on the forces in the femur: an in vivo study. J Biomech 30(11–12):1101–1106. https://doi.org/10.1016/s0021-9290(97)00090-0

Article  CAS  PubMed  Google Scholar 

Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473(2):117–123. https://doi.org/10.1016/j.abb.2008.02.028

Article  CAS  PubMed  Google Scholar 

Sugiyama T, Price JS, Lanyon LE (2010) Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46(2):314–321. https://doi.org/10.1016/j.bone.2009.08.054

Article  PubMed  PubMed Central  Google Scholar 

Gross TS, Poliachik SL, Prasad J, Bain SD (2010) The effect of muscle dysfunction on bone mass and morphology. J Musculoskelet Neuronal Interact 10(1):25–34

CAS  PubMed  Google Scholar 

Dudley-Javoroski S, Shields RK (2008) Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev 45(2):283. https://doi.org/10.1682/jrrd.2007.02.0031

Article  PubMed  PubMed Central  Google Scholar 

Elefteriou F (2008) Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys 473(2):231–236. https://doi.org/10.1016/j.abb.2008.03.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poliachik SL, Bain SD, Threet D, Huber P, Gross TS (2010) Transient muscle paralysis disrupts bone homeostasis by rapid degradation of bone morphology. Bone 46(1):18–23. https://doi.org/10.1016/j.bone.2009.10.025

Article  PubMed  Google Scholar 

Manske SL, Boyd SK, Zernicke RF (2010) Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone 46(1):24–31. https://doi.org/10.1016/j.bone.2009.10.016

Article  CAS  PubMed  Google Scholar 

Pickett A, O’Keeffe R, Judge A, Dodd S (2008) The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations. Toxicon 52(3):455–464. https://doi.org/10.1016/j.toxicon.2008.06.021

Article  CAS  PubMed  Google Scholar 

Ma J, Elsaidi GA, Smith TL, Walker FO, Tan KH, Martin E et al (2004) Time course of recovery of juvenile skeletal muscle after botulinum toxin A injection: an animal model study. Am J Phys Med Rehabil 83(10):774–780; quiz 81–83. https://doi.org/10.1097/01.phm.0000137315.17214.93

Rubin CT, Lanyon LE (1987) Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res 5(2):300–310. https://doi.org/10.1002/jor.1100050217

Article  CAS  PubMed  Google Scholar 

O’connor J, Lanyon L, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15(10):767–781. https://doi.org/10.1016/0021-9290(82)90092-6

Article  CAS  PubMed  Google Scholar 

Lanyon LE, Rubin C (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905. https://doi.org/10.1016/0021-9290(84)90003-4

Article 

留言 (0)

沒有登入
gif