Jørgensen H, Behets G, Bammens B, Claes K, Meijers B, Naesens M et al (2022) Natural history of bone disease following kidney transplantation. J Am Soc Nephrol. https://doi.org/10.1681/asn.2021081081
Article PubMed PubMed Central Google Scholar
Evenepoel P, Behets GJ, Viaene L, D’Haese PC (2017) Bone histomorphometry in de novo renal transplant recipients indicates a further decline in bone resorption 1 year posttransplantation. Kidney Int 91(2):469–476. https://doi.org/10.1016/j.kint.2016.10.008
Keronen S, Martola L, Finne P, Burton IS, Kroger H, Honkanen E (2019) Changes in bone histomorphometry after kidney transplantation. Clin J Am Soc Nephrol 14(6):894–903. https://doi.org/10.2215/CJN.09950818
Article CAS PubMed PubMed Central Google Scholar
Marques IDB, Araujo M, Graciolli FG, Dos Reis LM, Pereira RMR, Alvarenga JC et al (2019) A Randomized trial of zoledronic acid to prevent bone loss in the first year after kidney transplantation. J Am Soc Nephrol 30(2):355–365. https://doi.org/10.1681/ASN.2018060656.PubMedPMID:30606784;PubMedCentralPMCID:PMCPMC6362629
Article CAS PubMed PubMed Central Google Scholar
Ferreira AC, Mendes M, Silva C, Cotovio P, Aires I, Navarro D et al (2022) Improvement of mineral and bone disorders after renal transplantation. Transplantation 106(5):e251–e261. https://doi.org/10.1097/tp.0000000000004099
Article CAS PubMed PubMed Central Google Scholar
Torregrosa J-V, Ferreira AC, Cucchiari D, Ferreira A (2021) Bone mineral disease after kidney transplantation. Calcif Tissue Int. https://doi.org/10.1007/s00223-021-00837-0
Ferreira AC, Cohen-Solal M, D’Haese PC, Ferreira A (2021) The role of bone biopsy in the management of CKD-MBD. Calcif Tissue Int 108(4):528–538. https://doi.org/10.1007/s00223-021-00838-z
Article CAS PubMed Google Scholar
Evenepoel P, D’Haese P, Bacchetta J, Cannata-Andia J, Ferreira A, Haarhaus M et al (2017) Bone biopsy practice patterns across Europe: the European renal osteodystrophy initiative-a position paper. Nephrol Dial Transplant 32(10):1608–1613. https://doi.org/10.1093/ndt/gfw468
Fusaro M, Re Sartò GV, Gallieni M, Cosmai L, Messa P, Rossini M et al (2022) Time for revival of bone biopsy with histomorphometric analysis in chronic kidney disease (CKD): moving from skepticism to pragmatism. Nutrients. https://doi.org/10.3390/nu14091742
Article PubMed PubMed Central Google Scholar
Cohen-Solal M, Funck-Brentano T, Ureña TP (2020) Bone fragility in patients with chronic kidney disease. Endocr Connect 9(4):R93–R101. https://doi.org/10.1530/ec-20-0039
Article CAS PubMed PubMed Central Google Scholar
Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG (2007) Associations between vascular calcification, arterial stiffness and bone mineral density in chronic kidney disease. Nephrol Dial Transplant 23(2):586–593. https://doi.org/10.1093/ndt/gfm660
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2008) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61(4):344–349. https://doi.org/10.1016/j.jclinepi.2007.11.008
Matias P, Ávila G, Ferreira AC, Laranjinha I, Ferreira A (2023) Hypomagnesemia: a potential underlooked cause of persistent vitamin D deficiency in chronic kidney disease. Clin Kidney J. https://doi.org/10.1093/ckj/sfad123
Article PubMed PubMed Central Google Scholar
Espuch-Oliver A, Vázquez-Lorente H, Jurado-Fasoli L, de Haro-Muñoz T, Díaz-Alberola I, López-Velez MDS et al (2022) References values of soluble α-klotho serum levels using an enzyme-linked immunosorbent assay in healthy adults aged 18–85 years. J Clin Med. https://doi.org/10.3390/jcm11092415
Article PubMed PubMed Central Google Scholar
Heijboer AC, Cavalier E (2023) The measurement and interpretation of fibroblast growth factor 23 (FGF23) concentrations. Calcif Tissue Int 112(2):258–270. https://doi.org/10.1007/s00223-022-00987-9
Article CAS PubMed Google Scholar
Adragao T, Pires A, Lucas C, Birne R, Magalhaes L, Goncalves M et al (2004) A simple vascular calcification score predicts cardiovascular risk in haemodialysis patients. Nephrol Dial Transplant 19(6):1480–1488. https://doi.org/10.1093/ndt/gfh217
Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832
Article CAS PubMed Google Scholar
Malluche HH, Mawad HW, Monier-Faugere MC (2011) Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res 26(6):1368–1376. https://doi.org/10.1002/jbmr.309
Salam S, Gallagher O, Hughes D, Khwaja A, Eastell R (2021) The role of static bone histomorphometry in diagnosing renal osteodystrophy. Bone 142:115689. https://doi.org/10.1016/j.bone.2020.115689
Article CAS PubMed Google Scholar
Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17. https://doi.org/10.1002/jbmr.1805
Bhan A, Qiu S, Rao SD (2018) Bone histomorphometry in the evaluation of osteomalacia. Bone Rep 8:125–134. https://doi.org/10.1016/j.bonr.2018.03.005
Article PubMed PubMed Central Google Scholar
Borchhardt K, Sulzbacher I, Benesch T, Fodinger M, Sunder-Plassmann G, Haas M (2007) Low-turnover bone disease in hypercalcemic hyperparathyroidism after kidney transplantation. Am J Transplant 7(11):2515–2521. https://doi.org/10.1111/j.1600-6143.2007.01950.x
Article CAS PubMed Google Scholar
Keronen SM, Martola LAL, Finne P, Burton IS, Tong XF, Kröger HP et al (2022) Clinical prediction of high-turnover bone disease after kidney transplantation. Calcif Tissue Int 110(3):324–333. https://doi.org/10.1007/s00223-021-00917-1
Article CAS PubMed Google Scholar
Pereira L, Magalhães J, Mendonça L, Neto R, Santos J, Carvalho CG et al (2022) Evaluation of renal osteodystrophy and serum bone-related biomarkers in a peritoneal dialysis population. J Bone Miner Res. https://doi.org/10.1002/jbmr.4636
Lecoq AL, Brandi ML, Linglart A, Kamenický P (2020) Management of X-linked hypophosphatemia in adults. Metabolism. https://doi.org/10.1016/j.metabol.2019.154049
Ferreira AC, Cotovio P, Aires I, Mendes M, Navarro D, Silva C et al (2022) The role of bone volume, FGF23 and sclerostin in calcifications and mortality; a cohort study in CKD stage 5 patients. Calcif Tissue Int 110(2):215–224. https://doi.org/10.1007/s00223-021-00910-8
Article CAS PubMed Google Scholar
Jørgensen HS, Borghs H, Heye S, Smout D, Claes K, Evenepoel P (2022) Vascular calcification of the abdominal aorta has minimal impact on lumbar spine bone density in patients with chronic kidney disease. Bone 162:116482. https://doi.org/10.1016/j.bone.2022.116482
Kauppila LI, Polak JF, Cupples LA, Hannan MT, Kiel DP, Wilson PW (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132(2):245–250. https://doi.org/10.1016/s0021-9150(97)00106-8
Article CAS PubMed Google Scholar
Sotomayor CG, Benjamens S, Gomes-Neto AW, Pol RA, Groothof D, Te Velde-Keyzer CA et al (2021) Bone mineral density and aortic calcification: evidence for a bone-vascular axis after kidney transplantation. Transplantation 105(1):231–239. https://doi.org/10.1097/tp.0000000000003226
Article CAS PubMed Google Scholar
Evenepoel P, Opdebeeck B, David K, D’Haese PC (2019) Bone-vascular axis in chronic kidney disease. Adv Chronic Kidney Dis 26(6):472–483. https://doi.org/10.1053/j.ackd.2019.09.006
Fusaro M, Schileo E, Crimi G, Aghi A, Bazzocchi A, Barbanti Brodano G et al (2022) A Novel quantitative computer-assisted score can improve repeatability in the estimate of vascular calcifications at the abdominal aorta. Nutrients. https://doi.org/10.3390/nu14204276
Comments (0)