Pearce SH, Williamson C, Kifor O et al (1996) A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 335(15):1115–1122. https://doi.org/10.1056/NEJM199610103351505
Article CAS PubMed Google Scholar
Nesbit MA, Hannan FM, Howles SA et al (2013) Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med 368(26):2476–2486. https://doi.org/10.1056/NEJMoa1300253
Article CAS PubMed PubMed Central Google Scholar
Mittelman SD, Hendy GN, Fefferman RA et al (2006) A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone. J Clin Endocrinol Metab 91(7):2474–2479. https://doi.org/10.1210/jc.2005-2605
Article CAS PubMed Google Scholar
Raue F, Pichl J, Dörr HG et al (2011) Activating mutations in the calcium-sensing receptor: genetic and clinical spectrum in 25 patients with autosomal dominant hypocalcaemia - a German survey. Clin Endocrinol (Oxf) 75(6):760–765. https://doi.org/10.1111/j.1365-2265.2011.04142.x
Article CAS PubMed Google Scholar
Sastre A, Valentino K, Hannan FM et al (2021) PTH infusion for seizures in autosomal dominant hypocalcemia type 1. N Engl J Med 385(2):189–191. https://doi.org/10.1056/NEJMc2034981
Article PubMed PubMed Central Google Scholar
Gomes V, Silvestre C, Ferreira F, Bugalho MJGM (2020). BMJ Case Rep. https://doi.org/10.1136/bcr-2020-234391
Article PubMed PubMed Central Google Scholar
Elston MS, Elajnaf T, Hannan FM, Thakker RV (2022) Autosomal Dominant Hypocalcemia Type 1 (ADH1) associated with myoclonus and intracerebral calcifications. J Endocr Soc. https://doi.org/10.1210/jendso/bvac042
Article PubMed PubMed Central Google Scholar
Praga M, Vara J, González-Parra E et al (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47(5):1419–1425. https://doi.org/10.1038/ki.1995.199
Article CAS PubMed Google Scholar
Claverie-Martin F (2015) Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: clinical and molecular characteristics. Clin Kidney J 8(6):656–664. https://doi.org/10.1093/ckj/sfv081
Article CAS PubMed PubMed Central Google Scholar
Godron A, Harambat J, Boccio V et al (2012) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol 7(5):801–809. https://doi.org/10.2215/CJN.12841211
Article CAS PubMed PubMed Central Google Scholar
Weber S, Schneider L, Peters M et al (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12(9):1872–1881. https://doi.org/10.1681/ASN.V1291872
Article CAS PubMed Google Scholar
Konrad M, Schaller A, Seelow D et al (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79(5):949–957. https://doi.org/10.1086/508617
Article CAS PubMed PubMed Central Google Scholar
Claverie-Martín F, García-Nieto V, Loris C et al (2013) Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. PLoS ONE 8(1):e53151. https://doi.org/10.1371/journal.pone.0053151
Article CAS PubMed PubMed Central Google Scholar
Vall-Palomar M, Madariaga L, Ariceta G (2021) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Pediatr Nephrol 36(10):3045–3055. https://doi.org/10.1007/s00467-021-04968-2
Prabahar MR, Manorajan R, Fernando ME, Venkatraman R, Balaraman V, Jayakumar M (2006) Nephrocalcinosis in siblings–familial hypomagnesemia, hypercalciuria with nephrocalcinosis (FHHNC syndrome). J Assoc Physicians India 54:497–500
Geethalakshmi S, Bhavani N, Vinayan KP, Nair V (2021) Rare Inherited hypomagnesemias—an endocrine case series. Indian Pediatr 58(5):489–490
Article CAS PubMed Google Scholar
Chang X, Wang K (2012) wANNOVAR: annotating genetic variants for personal genomes via the web. J Med Genet 49(7):433–436. https://doi.org/10.1136/jmedgenet-2012-100918
Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684. https://doi.org/10.1093/bioinformatics/11.6.681
Article CAS PubMed Google Scholar
Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362. https://doi.org/10.1038/nmeth.2890
Article CAS PubMed Google Scholar
Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. https://doi.org/10.1093/nar/gki375
Article PubMed PubMed Central Google Scholar
Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539
Article PubMed PubMed Central Google Scholar
TOPO2 (http://www.sacs.ucsf.edu/TOPO2/).
Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y (2021) Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep Methods 1(3):100014. https://doi.org/10.1016/j.crmeth.2021.100014
Article CAS PubMed PubMed Central Google Scholar
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8. https://doi.org/10.1038/nmeth.3213
Article CAS PubMed PubMed Central Google Scholar
Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181. https://doi.org/10.1093/nar/gkv342
Article CAS PubMed PubMed Central Google Scholar
Simon DB, Lu Y, Choate KA et al (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285(5424):103–106. https://doi.org/10.1126/science.285.5424.103
Article CAS PubMed Google Scholar
Yamaguti PM, Neves FA, Hotton D et al (2017) Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J Med Genet 54(11):786
Bardet C, Courson F, Wu Y et al (2016) Claudin-16 deficiency impairs tight junction function in ameloblasts, leading to abnormal enamel formation. J Bone Miner Res 31(3):498–513. https://doi.org/10.1002/jbmr.2726
Article CAS PubMed Google Scholar
de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. https://doi.org/10.1152/physrev.00012.2014
Article CAS PubMed Google Scholar
de Baaij JH, Dorresteijn EM, Hennekam EA et al (2015) Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrol Dial Transplant 30(6):952–957. https://doi.org/10.1093/ndt/gfv014
Article CAS PubMed Google Scholar
Hou J, Rajagopal M, Yu AS (2013) Claudins and the kidney. Annu Rev Physiol 75:479–501. https://doi.org/10.1146/annurev-physiol-030212-183705
Article CAS PubMed Google Scholar
Hou J, Renigunta A, Konrad M et al (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118(2):619–628. https://doi.org/10.1172/JCI33970
Article CAS PubMed PubMed Central Google Scholar
Dimke H, Schnermann J (2018) Axial and cellular heterogeneity in electrolyte transport pathways along the thick ascending limb. Acta Physiol (Oxf) 223(1):e13057. https://doi.org/10.1111/apha.13057
Article CAS PubMed Google Scholar
Muto S (2017) Physiological roles of claudins in kidney tubule paracellular transport. Am J Physiol Renal Physiol 312(1):F9–F24. https://doi.org/10.1152/ajprenal.00204.2016
Article CAS PubMed Google Scholar
Tsukita S, Tanaka H, Tamura A (2019) T
Comments (0)