CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui Z, Liu H, Zhang H, Huang Z, Tian R, Li L, et al. The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy. Mol Therapy Nucleic Acids. 2021;26:1466–78.

Article  CAS  PubMed  Google Scholar 

Gaj T, Gersbach CA, Barbas CF. 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Delivery. 2018;25(1):1234–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Sci (New York NY). 2014;346(6213):1258096.

Article  Google Scholar 

Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 for Cancer Therapy: hopes and challenges. Biomedicines. 2018;6(4).

Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered. 2016;7(3):166–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–2.

Article  CAS  PubMed  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Sci (New York NY). 2013;339(6121):819–23.

Article  CAS  Google Scholar 

Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife. 2013;2:e00471.

Article  PubMed  PubMed Central  Google Scholar 

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al. RNA-guided human genome engineering via Cas9. Science (New York, NY). 2013;339(6121):823–6.

Lim WA, June CH. The principles of Engineering Immune cells to treat Cancer. Cell. 2017;168(4):724–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jindal V, Arora E, Gupta S. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors. Med Oncol (Northwood Lond Engl). 2018;35(6):87.

Article  Google Scholar 

Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151(Pt 3):653–63.

Article  CAS  PubMed  Google Scholar 

van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 2014;12(7):479–92.

Article  PubMed  PubMed Central  Google Scholar 

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Sci (New York NY). 2007;315(5819):1709–12.

Article  CAS  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sci (New York NY). 2012;337(6096):816–21.

Article  CAS  Google Scholar 

Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011;39(21):9275–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507(7490):62–7.

Article  CAS  PubMed Central  Google Scholar 

Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006;1:7.

Article  PubMed  PubMed Central  Google Scholar 

Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109(39):E2579–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. 2014;513(7519):569–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4(9):712–20.

Article  CAS  PubMed  Google Scholar 

Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14(12):8096–106.

CAS  PubMed  PubMed Central  Google Scholar 

Cromie GA, Connelly JC, Leach DR. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol Cell. 2001;8(6):1163–74.

Article  CAS  PubMed  Google Scholar 

He C, Han S, Chang Y, Wu M, Zhao Y, Chen C, et al. CRISPR screen in cancer: status quo and future perspectives. Am J cancer Res. 2021;11(4):1031–50.

CAS  PubMed  PubMed Central  Google Scholar 

Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol. 2016;16:4.

Article  PubMed  PubMed Central  Google Scholar 

Li R, Xia X, Wang X, Sun X, Dai Z, Huo D, et al. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Biol. 2020;18(11):e3000749.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi S, Gu S, Han T, Zhang W, Huang L, Li Z, et al. Inhibition of MAN2A1 enhances the Immune response to Anti-PD-L1 in human tumors. Clin cancer Research: Official J Am Association Cancer Res. 2020;26(22):5990–6002.

Article  CAS  Google Scholar 

Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547(7664):413–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawson KA, Sousa CM, Zhang X, Kim E, Akthar R, Caumanns JJ, et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature. 2020;586(7827):120–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubrot J, Du PP, Lane-Reticker SK, Kessler EA, Muscato AJ, Mehta A, et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat Immunol. 2022;23(10):1495–506.

Article  CAS  PubMed  Google Scholar 

Li F, Huang Q, Luster TA, Hu H, Zhang H, Ng WL, et al. In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-Mutant Lung Adenocarcinoma. Cancer Discov. 2020;10(2):270–87.

Article  PubMed  Google Scholar 

Wang X, Tokheim C, Gu SS, Wang B, Tang Q, Li Y, et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell. 2021;184(21):5357–74e22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang G, Chow RD, Zhu L, Bai Z, Ye L, Zhang F, et al. CRISPR-GEMM pooled mutagenic screening identifies KMT2D as a major modulator of Immune Checkpoint Blockade. Cancer Discov. 2020;10(12):1912–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif