Upregulated PARP1 confers breast cancer resistance to CDK4/6 inhibitors via YB-1 phosphorylation

Xu H, Yu S, Liu Q, Yuan X, Mani S, Pestell RG, et al. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. J Hematol Oncol. 2017;10(1):97. https://doi.org/10.1186/s13045-017-0467-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. New England J Med. 2016;375(20):1925–36. https://doi.org/10.1056/NEJMoa1607303.

Article  CAS  Google Scholar 

Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nature Rev Clin Oncol. 2015;12(10):573–83. https://doi.org/10.1038/nrclinonc.2015.117.

Article  CAS  Google Scholar 

Du Q, Guo X, Wang M, Li Y, Sun X, Li Q. The application and prospect of CDK4/6 inhibitors in malignant solid tumors. J Hematol Oncol. 2020;13(1):41. https://doi.org/10.1186/s13045-020-00880-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive advanced breast cancer. New England J Med. 2016;375(18):1738–48. https://doi.org/10.1056/NEJMoa1609709.

Article  CAS  Google Scholar 

Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(25):2875–84. https://doi.org/10.1200/jco.2017.73.7585.

Article  CAS  Google Scholar 

Ge JY, Shu S, Kwon M, Jovanović B, Murphy K, Gulvady A, et al. Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nature Commun. 2020;11(1):2350. https://doi.org/10.1038/s41467-020-16170-3.

Article  CAS  Google Scholar 

Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 2016;76(8):2301–13. https://doi.org/10.1158/0008-5472.Can-15-0728.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goel S, Wang Q, Watt AC, Tolaney SM, Dillon DA, Li W, et al. Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 inhibitors. Cancer Cell. 2016;29(3):255–69. https://doi.org/10.1016/j.ccell.2016.02.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salvador-Barbero B, Álvarez-Fernández M, Zapatero-Solana E, El Bakkali A, Menéndez MDC, López-Casas PP, et al. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. Cancer Cell. 2020;37(3):340-53.e6. https://doi.org/10.1016/j.ccell.2020.01.007.

Article  CAS  PubMed  Google Scholar 

Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nature Comm. 2019;10(1):1373. https://doi.org/10.1038/s41467-019-09068-2.

Article  CAS  Google Scholar 

Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting aberrant FGFR signaling to overcome CDK4/6 inhibitor resistance in breast cancer. Cells. 2021. https://doi.org/10.3390/cells10020293.

Article  PubMed  PubMed Central  Google Scholar 

Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28. https://doi.org/10.1186/s12943-021-01489-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471–5. https://doi.org/10.1038/nature23465.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell. 2018;34(6):893-905.e8. https://doi.org/10.1016/j.ccell.2018.11.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Jin X, Ma J, Ding D, Huang Z, Sheng H, et al. HDAC5 loss impairs RB repression of pro-oncogenic genes and confers CDK4/6 inhibitor resistance in cancer. Cancer Res. 2021;81(6):1486–99. https://doi.org/10.1158/0008-5472.Can-20-2828.

Article  CAS  PubMed  Google Scholar 

Costa C, Wang Y, Ly A, Hosono Y, Murchie E, Walmsley CS, et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Disc. 2020;10(1):72–85. https://doi.org/10.1158/2159-8290.Cd-18-0830.

Article  CAS  Google Scholar 

Li Q, Jiang B, Guo J, Shao H, Del Priore IS, Chang Q, et al. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Disc. 2022;12(2):356–71. https://doi.org/10.1158/2159-8290.Cd-20-1726.

Article  CAS  Google Scholar 

Kong Y, Ren W, Fang H, Shah NA, Shi Y, You D, et al. Histone deacetylase inhibitors (HDACi) promote KLF5 ubiquitination and degradation in basal-like breast cancer. Int J Biol Sci. 2022;18(5):2104–15. https://doi.org/10.7150/ijbs.65322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang F, Chen S, He S, Huo Q, Hu Y, Xie N. YB-1 interplays with ERα to regulate the stemness and differentiation of ER-positive breast cancer stem cells. Theranostics. 2020;10(8):3816–32. https://doi.org/10.7150/thno.41014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaiman AV, Stromskaya TP, Rybalkina EY, Sorokin AV, Ovchinnikov LP, Stavrovskaya AA. Development of drug resistance in the population of colon cancer cells under the effect of multifunctional protein YB-1. Bull Experim Biol Med. 2007;143(4):463–6. https://doi.org/10.1007/s10517-007-0157-0.

Article  CAS  Google Scholar 

Stavrovskaya A, Stromskaya T, Rybalkina E, Moiseeva N, Vaiman A, Guryanov S, et al. YB-1 protein and multidrug resistance of tumor cells. Current Signal Trans Ther. 2012;7(3):237–46. https://doi.org/10.2174/157436212802481592.

Article  CAS  Google Scholar 

El-Naggar AM, Veinotte CJ, Cheng H, Grunewald TG, Negri GL, Somasekharan SP, et al. Translational activation of HIF1α by YB-1 promotes sarcoma metastasis. Cancer Cell. 2015;27(5):682–97. https://doi.org/10.1016/j.ccell.2015.04.003.

Article  CAS  PubMed  Google Scholar 

Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74(3):829–39. https://doi.org/10.1158/0008-5472.Can-13-2466.

Article  CAS  PubMed  Google Scholar 

Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi T, Iwamoto Y, et al. The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer ther. 2004;3(11):1485–92.

Article  CAS  PubMed  Google Scholar 

Jurchott K, Bergmann S, Stein U, Walther W, Janz M, Manni I, et al. YB-1 as a cell cycle-regulated transcription factor facilitating cyclin A and cyclin B1 gene expression. J Biol Chem. 2003;278(30):27988–96. https://doi.org/10.1074/jbc.M212966200.

Article  CAS  PubMed  Google Scholar 

Homer C, Knight DA, Hananeia L, Sheard P, Risk J, Lasham A, et al. Y-box factor YB1 controls p53 apoptotic function. Oncogene. 2005;24(56):8314–25. https://doi.org/10.1038/sj.onc.1208998.

Article  CAS  PubMed  Google Scholar 

Lou L, Wang J, Lv F, Wang G, Li Y, Xing L, et al. Y-box binding protein 1 (YB-1) promotes gefitinib resistance in lung adenocarcinoma cells by activating AKT signaling and epithelial-mesenchymal transition through targeting major vault protein (MVP). Cell Oncol. 2021;44(1):109–33. https://doi.org/10.1007/s13402-020-00556-y.

Article  CAS  Google Scholar 

Tong H, Zhao K, Zhang J, Zhu J, Xiao J. YB-1 modulates the drug resistance of glioma cells by activation of MDM2/p53 pathway. Drug Design Develop Ther. 2019;13:317–26. https://doi.org/10.2147/dddt.S185514.

Article  CAS  Google Scholar 

Miao X, Wu Y, Wang Y, Zhu X, Yin H, He Y, et al. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma. Experim Cell Res. 2016;346(2):157–66. https://doi.org/10.1016/j.yexcr.2016.07.003.

Article  CAS  Google Scholar 

Dhillon J, Astanehe A, Lee C, Fotovati A, Hu K, Dunn SE. The expression of activated Y-box binding protein-1 serine 102 mediates trastuzumab resistance in breast cancer cells by increasing CD44+ cells. Oncogene. 2010;29(47):6294–300. https://doi.org/10.1038/onc.2010.365.

Article  CAS  PubMed  Google Scholar 

To K, Fotovati A, Reipas KM, Law JH, Hu K, Wang J, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res. 2010;70(7):2840–51. https://doi.org/10.1158/0008-5472.Can-09-3155.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao LZ, Chen CT, Li NC, Lin LC, Huang BS, Chang YH, et al. Y-box binding protein-1 promotes epithelial-mesenchymal transition in sorafenib-resistant hepatocellular carcinoma cells.

留言 (0)

沒有登入
gif