Immune checkpoint inhibitors for multiple myeloma immunotherapy

McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613–28.

Article  CAS  PubMed  Google Scholar 

Greaves M. Evolutionary determinants of cancer. Cancer Discov. 2015;5(8):806–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

Article  CAS  PubMed  Google Scholar 

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

Article  PubMed  Google Scholar 

Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev. 2008;224:141–65.

Article  CAS  PubMed  Google Scholar 

Minnie SA, Hill GR. Immunotherapy of multiple myeloma. J Clin Investig. 2020;130(4):1565–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franssen LE, Mutis T, Lokhorst HM, et al. Immunotherapy in myeloma: how far have we come? Ther Adv Hematol. 2019;10:2040620718822660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60.

Article  CAS  PubMed  Google Scholar 

Alkharabsheh O, Trisel Z, Badami S, et al. Checkpoint inhibitors in multiple myeloma: intriguing potential and unfulfilled promises. Cancers. 2021;14(1):113.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Zheng J. Functions of immune checkpoint molecules beyond immune evasion. Adv Exp Med Biol. 2020;1248:201–26.

Article  CAS  PubMed  Google Scholar 

Darvin P, Toor SM, Sasidharan Nair V, et al. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.

Article  PubMed  Google Scholar 

Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

Article  PubMed  PubMed Central  Google Scholar 

Thallinger C, Füreder T, Preusser M, et al. Review of cancer treatment with immune checkpoint inhibitors : Current concepts, expectations, limitations and pitfalls. Wien Klin Wochenschr. 2018;130(3–4):85–91.

Article  CAS  PubMed  Google Scholar 

Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185–98.

Article  PubMed  Google Scholar 

Pizzi M, Boi M, Bertoni F, et al. Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells. Leukemia. 2016;30(9):1805–15.

Article  CAS  PubMed  Google Scholar 

Che F, Heng X, Zhang H, et al. Novel B7-H4-mediated crosstalk between human non-Hodgkin lymphoma cells and tumor-associated macrophages leads to immune evasion via secretion of IL-6 and IL-10. Cancer Immunol Immunother. 2017;66(6):717–29.

Article  CAS  PubMed  Google Scholar 

Janakiram M, Pareek V, Cheng H, et al. Immune checkpoint blockade in human cancer therapy: lung cancer and hematologic malignancies. Immunotherapy. 2016;8(7):809–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature. 1987;328(6127):267–70.

Article  CAS  PubMed  Google Scholar 

Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.

Article  CAS  PubMed  Google Scholar 

Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–58.

Article  CAS  PubMed  Google Scholar 

Ikemizu S, Gilbert RJ, Fennelly JA, et al. Structure and dimerization of a soluble form of B7–1. Immunity. 2000;12(1):51–60.

Article  CAS  PubMed  Google Scholar 

Linsley PS, Bradshaw J, Greene J, et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4(6):535–43.

Article  CAS  PubMed  Google Scholar 

van Coillie S, Wiernicki B, Xu J. Molecular and cellular functions of CTLA-4. Adv Exp Med Biol. 2020;1248:7–32.

Article  PubMed  Google Scholar 

Paiva B, Azpilikueta A, Puig N, et al. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia. 2015;29(10):2110–3.

Article  CAS  PubMed  Google Scholar 

Collins AV, Brodie DW, Gilbert RJ, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–10.

Article  CAS  PubMed  Google Scholar 

Olsson C, Riesbeck K, Dohlsten M, et al. CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J Biol Chem. 1999;274(20):14400–5.

Article  CAS  PubMed  Google Scholar 

Fraser JH, Rincón M, Mccoy KD, et al. CTLA4 ligation attenuates AP-1, NFAT and NF-kappaB activity in activated T cells. Eur J Immunol. 1999;29(3):838–44.

Article  CAS  PubMed  Google Scholar 

Brunner MC, Chambers CA, Chan FK, et al. CTLA-4-Mediated inhibition of early events of T cell proliferation. J Immunol. 1999;162(10):5813–20.

Article  CAS  PubMed  Google Scholar 

Wang Y, Liu S, Yang Z, et al. Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy. Cancer Cell. 2021;39(10):1375-87.e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pianko MJ, Liu Y, Bagchi S, et al. Immune checkpoint blockade for hematologic malignancies: a review. Stem Cell Investig. 2017;4:32.

Article  PubMed  PubMed Central  Google Scholar 

Braga WM, da Silva BR, de Carvalho AC, et al. FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4(+) T regulatory cells. Cancer Immunol Immunother. 2014;63(11):1189–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karabon L, Pawlak-Adamska E, Tomkiewicz A, et al. Variations in suppressor molecule ctla-4 gene are related to susceptibility to multiple myeloma in a polish population. Pathol Oncol Res. 2012;18(2):219–26.

Article  CAS  PubMed  Google Scholar 

Zheng C, Huang D, Liu L, et al. Cytotoxic T-lymphocyte antigen-4 microsatellite polymorphism is associated with multiple myeloma. Br J Haematol. 2001;112(1):216–8.

Article  CAS  PubMed  Google Scholar 

Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daëron M, Jaeger S, du Pasquier L, et al. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev. 2008;224:11–43.

Article  PubMed  Google Scholar 

Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

Article  PubMed  PubMed Central  Google Scholar 

Riella LV, Paterson AM, Sharpe AH, et al. Role of the PD-1 pathway in the immune response. Am J Transplant. 2012;12(10):2575–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif