Panax japonicus C.A. Meyer: a comprehensive review on botany, phytochemistry, pharmacology, pharmacokinetics and authentication

Yang X, Wang R, Zhang S, et al. Polysaccharides from Panax japonicus C.A. Meyer and their antioxidant activities. Carbohydr Polym. 2014;101:386–91.

Article  CAS  PubMed  Google Scholar 

Morita T, Tanaka O, Kohda H. Saponin composition of rhizomes of Panax japonicus collected in South Kyushu, Japan, and its significance in oriental traditional medicine. Chem pharm bull. 1985;33:3852–8.

Article  CAS  Google Scholar 

Zhang S, Wu Y, Jin J, et al. De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis. Biochem Biophys Res Co. 2015;466(3):450–5.

Article  CAS  Google Scholar 

Wang R, Chen P, Jia F, et al. Characterization and antioxidant activities of polysaccharides from Panax japonicus C.A. Meyer. Carbohydr Polym. 2012;88(4):1402–6.

Article  CAS  Google Scholar 

You XL, Han JY, Choi YE. Plant regeneration via direct somatic embryogenesis in Panax japonicus. Plant Biotechnol Rep. 2007;1(1):5–9.

Article  Google Scholar 

Ngan F, Shaw P, But P, et al. Molecular authentication of Panax species. Phytochemistry. 1999;50(5):787–91.

Article  CAS  PubMed  Google Scholar 

Xia P, Li J, Wang R, et al. Comparative study on volatile oils of four Panax genus species in Southeast Asia by gas chromatography–mass spectrometry. Ind Crops Prod. 2015;74:478–84.

Article  CAS  Google Scholar 

Yoshizaki K, Devkota HP, Yahara S. Four new triterpenoid saponins from the leaves of Panax japonicus grown in southern Miyazaki Prefecture (4). Chem Pharm Bull. 2013;61(3):273–8.

Article  CAS  Google Scholar 

Yoshizaki K, Devkota HP, Fujino H, et al. Saponins composition of rhizomes, taproots, and lateral roots of Satsuma-ninjin (Panax japonicus). Chem Pharm Bull. 2013;61(3):344–50.

Article  CAS  Google Scholar 

Yoshizaki K, Murakami M, Fujino H, et al. New triterpenoid saponins from fruit specimens of Panax japonicus collected in Toyama Prefecture and Hokkaido (2). Chem Pharm Bull. 2012;60(6):728–35.

Article  CAS  Google Scholar 

Ouyang LN, Xiang DW, Wu X, et al. Research progress on chemical constituents and pharmacological activities of Panax japonicus. Chin Tradit Herbal Drugs. 2010;41(6):1023–7.

CAS  Google Scholar 

Zhou M, Xu M, Zhu HT, et al. New dammarane-type saponins from the rhizomes of Panax japonicus. Helv Chim Acta. 2011;94(11):2010–9.

Article  CAS  Google Scholar 

Tanaka K, Kubota M, Zhu S, et al. Analysis of ginsenosides in Ginseng drugs using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Nat Prod Commun. 2007;2(6):625–32.

CAS  Google Scholar 

Chen J, Tan M, Zou L, et al. Qualitative and quantitative analysis of the saponins in Panacis Japonici Rhizoma using ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry and ultra-fast liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry. Chem Pharm Bull. 2019;67(8):839–48.

Article  CAS  Google Scholar 

Wu QS, Chen P, Zhang QW, et al. Advances in research of chemical constituents, pharmacological activities and analytical methods of Panax japonicus. Asia Pac Tradit Med. 2016;12(06):46–54.

Google Scholar 

Du Z, Li J, Zhang X, et al. An integrated LC-MS-based strategy for the quality assessment and discrimination of three Panax Species. Molecules. 2018;23(11):2988.

Article  PubMed  PubMed Central  Google Scholar 

Chen JL, Tan MX, Zou LS, et al. Stimultaneous determination of multiple bioactive constituents in Panacis Japonici Rhizoma processed by different methods and grey relational analysis. Chin J of Chin Mater Med. 2018;43(21):4274–82.

Google Scholar 

Tanaka O, Morita T, Kasai R, et al. Study on saponins of rhizomes of Panax pseudo-ginseng subsp. himalaicus collected at Tzatogang and Pari-la, Bhutan-Himalaya. Chem Pharm Bull. 1985;33(6):2323–30.

Article  CAS  Google Scholar 

Cai P, Xiao ZY, Wei JX. Chemical constituents of Panax japonicus (I). Chin Tradit Herbal Drugs. 1982;13(3):1–2.

CAS  Google Scholar 

Cai P, Xiao ZY. Chemical constituents of Panax japonicus (II). Chin Tradit Herbal Drugs. 1984;15(6):1–6.

Google Scholar 

Atopkina LN, Denisenko VA. Synthesis of 20S-protopanaxatriol β-d-glucopyranosides. Chem Nat Compd. 2019;55(1):82–7.

Article  CAS  Google Scholar 

Jia L, Zhao Y. Current evaluation of the millennium phytomedicine–ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations. Curr Med Chem. 2009;16(19):2475.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou K, Zhu S, Meselhy MR, et al. Dammarane-type saponins from Panax japonicus and their neurite outgrowth activity in SK-N-SH cells. J Nat Prod. 2002;65(9):1288–92.

Article  CAS  PubMed  Google Scholar 

Zou K, Zhu S, Tohda C, et al. Dammarane-type triterpene saponins from Panax japonicus. J Nat Prod. 2002;65(3):346–51.

Article  CAS  PubMed  Google Scholar 

Huang Z, Huang Y, Li X, et al. Molecular mass and chain conformations of Rhizoma Panacis Japonici polysaccharides. Carbohydr Polym. 2009;78(3):596–601.

Article  CAS  Google Scholar 

Huang Z, Zhang L. Chemical structures of water-soluble polysaccharides from Rhizoma Panacis Japonici. Carbohydr Res. 2009;344(9):1136–40.

Article  CAS  PubMed  Google Scholar 

Huang Z, Zhang L, Duan X, et al. Novel highly branched water-soluble heteropolysaccharides as immunopotentiators to inhibit S-180 tumor cell growth in BALB/c mice. Carbohyd Polym. 2012;87(1):427–34.

Article  CAS  Google Scholar 

Meyer C, Zhang L, Zhang X, et al. Comparative analysis of the essential oils from normal and hairy roots of Panax japonicas C.A. Meyer. Afr J Biotechnol. 2011;10:2440–5.

Google Scholar 

Yang LB, Liu SJ, Da LL, et al. Research of fat-soluble components of Panax japonicus C. A. Mey. J Anhui Agric Sci. 2011;39(20):12145–6.

Google Scholar 

Chen L, Ren H, Xu R, et al. The effect of Fufang Zhujieshen tablets on inflammatory factors in osteoarthritis. Chin Hosp Pharm J. 2019;39(06):580–5.

Google Scholar 

Tan QL. The effects of anti -inflammatory of compound Panax japonicus Tablet in rheumatoid arthritis mice. Chin Med Herald. 2011;8(28):27–8.

Article  Google Scholar 

Wang ZF, Tan QL, Zhang H, et al. Experimental studies on the mechanism of compound Japanese Ginseng pill in treatment of Rheumatoid arthritis. Lishizhen Med Mater Med Res. 2009;20(7):1611–3.

Google Scholar 

Wen DJ, Chen GD, Zhang CL, et al. Study on the anti-inflammatory effects of total Panax japonicus saponins. Lishizhen Med Mater Med Res. 2008;19(5):1155–6.

CAS  Google Scholar 

Deng L, Yuan D, Zhou Z, et al. Saponins from Panax japonicus attenuate age-related neuroinflammation via regulation of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways. Neural Regen Res. 2017;12(11):1877–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng ZH, Dun YY, Liu J, et al. Effects of saponins from Panax japonicus on colonic inflammation through Neu3/IAP signaling pathway in aging rats. Lishizhen Med Mater Med Res. 2019;30(7):1597–601.

Google Scholar 

Wang T, Dai Y, Dun Y, et al. Chikusetsusaponin V inhibits inflammatory responses via NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages. Immunopharm Immunot. 2014;36(6):404–11.

Article  CAS  Google Scholar 

Yuan C, Liu C, Wang T, et al. Chikusetsu saponinIVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling. Oncotarget. 2017;8(19):31023.

Article  PubMed  PubMed Central  Google Scholar 

Zhao QQ, Wang T, Yuang D, et al. Effect of Panax japonicus polysaccharide on LPS induced microglial inflammatory response. J Chin Med Mater. 2019;42(6):1409–12.

Google Scholar 

Duan L, Liu CQ, Wu LC, et al. Effects of Panax japonicus hypolipidemic compound on non-alcoholic fatty liver disease in mice and its mechanism. Med J Chin PLA. 2017;42(9):764–8.

Google Scholar 

Qin YE, Cui QQ, Zhang CC, et al. Effects of total saponins from Panax japonicus on acute hepatic injury induced by carbon tetrachloride. Chin J Inf Tradit Chin Med. 2014;21(10):47–9.

Google Scholar 

Qin YE, Zhang CC, Wang T, et al. Effect of polysaccharide from Panax japonicus on hepatic cell injury. Chin J Inf Tradit Chin Med. 2014;21(11):59–62.

CAS  Google Scholar 

Yang XL, Chen P. Protective Effects of polysaccharide and total Saponins from Panax japonicus on acute hepatic injury. Chin J Inf Tradit Chin Med. 2011;17(1):65–6.

Google Scholar 

Yuan D, Xiang T, Huo Y, et al. Preventive effects of total saponins of Panax japonicus on fatty liver fibrosis in mice. Arch Med Sci. 2018;14(2):396–406.

Article  CAS  PubMed  Google Scholar 

Dai YW, Zhang CC, Zhao HX, et al. Chikusetsusaponin V attenuates lipopolysaccharide-induced liver injury in mice. Immunopharm Immunot. 2016;38(3):167–74.

Article  CAS  Google Scholar 

Xu R, Liu Z, Fu Q, et al. Protective effects of polysaccharides from Panax japonicus on mice with liver injury induced by acetaminophen. J South-Central Univ Nat (Nat Sci Ed). 2020;39(1):51–5.

Google Scholar 

Jiang SQ, Duan H, Shu GW, et al. Protective effects of polysaccharides from Panax japonicus on mice with acute liver injury induced by LPS/D-GalN. Chin Med Mat. 2017;40(5):1170–3.

Google Scholar 

Zhou Q, Duan L, Wu LC, et al. Experimental study of the protective effects of extracts of Panax japonica rhizoma, Salviae Miltiorrhiz radix Et Rhizoma and Crataegi Fructus compound on the hypolipidaemic in nonalcoholic fatty liver of mice. Chin J Clin Pharmacol. 2018;34(13):1532–5.

Google Scholar 

He ZG, Wang YP, Liu L,

留言 (0)

沒有登入
gif