Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens

Rajkumar, S. V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 95, 548–567 (2020).

Article  CAS  PubMed  Google Scholar 

Shah, U. A. & Mailankody, S. Emerging immunotherapies in multiple myeloma. BMJ 370, m3176 (2020).

Article  PubMed  Google Scholar 

Costa, L. J. et al. Daratumumab, carfilzomib, lenalidomide, and dexamethasone with minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma. J. Clin. Oncol. 40, 2901–2912 (2022).

Derman, B. A. et al. Elotuzumab and weekly carfilzomib, lenalidomide, and dexamethasone in patients with newly diagnosed multiple myeloma without transplant intent: a phase 2 measurable residual disease-adapted study. JAMA Oncol. 8,1278–1286 (2022).

Diamond, B. et al. Dynamics of minimal residual disease in patients with multiple myeloma on continuous lenalidomide maintenance: a single-arm, single-centre, phase 2 trial. Lancet Haematol. 8, e422–e432 (2021).

Article  CAS  PubMed  Google Scholar 

Kumar, S. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 17, e328–e346 (2016).

Article  PubMed  Google Scholar 

Facon, T. et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N. Engl. J. Med. 380, 2104–2115 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Landgren, O. et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: the MANHATTAN nonrandomized clinical trial. JAMA Oncol. 7, 862–868 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Moreau, P. et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 394, 29–38 (2019).

Article  CAS  PubMed  Google Scholar 

San-Miguel, J. et al. Sustained minimal residual disease negativity in newly diagnosed multiple myeloma and the impact of daratumumab in MAIA and ALCYONE. Blood 139, 492–501 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voorhees, P. M. et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood 136, 936–945 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kortum, K. M. et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood 128, 1226–1233 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misund, K. et al. Clonal evolution after treatment pressure in multiple myeloma: heterogenous genomic aberrations and transcriptomic convergence. Leukemia 36, 1887–1897 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasche, L. et al. The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states. Nat. Commun. 13, 4517 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maura, F., Rustad, E. H., Boyle, E. M. & Morgan, G. J. Reconstructing the evolutionary history of multiple myeloma. Best Pract. Res. Clin. Haematol. 33, 101145 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Rustad, E. H. et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov. 1, 258–273 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bailur, J. K. et al. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight 5, e127807 (2019).

Article  PubMed  Google Scholar 

Dhodapkar, K. M. et al. Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma. Blood Cancer Discov. 3, 490–501 (2022).

Zavidij, O. et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat Cancer 1, 493–506 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. & Love, J. C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–135 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richardson, P. G. et al. Triplet therapy, transplantation, and maintenance until progression in myeloma. N. Engl. J. Med. 387, 132–147 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maura, F. et al. A practical guide for mutational signature analysis in hematological malignancies. Nat. Commun. 10, 2969 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Rustad, E. H. et al. Timing the initiation of multiple myeloma. Nat. Commun. 11, 1917 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maura, F. et al. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia 32,1044–1048 (2018).

Walker, B. A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat. Commun. 6, 6997 (2015).

Article  CAS  PubMed  Google Scholar 

Maura, F. et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat. Commun. 10, 3835 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Walker, B. A. et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 132, 587–597 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, Y. C. et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 27, 491–503 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leung-Hagesteijn, C. et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 24, 289–304 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

Article  PubMed  Google Scholar 

Gooding, S. et al. Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood 137, 232–237 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ziccheddu, B. et al. Functional impact of genomic complexity on the transcriptome of multiple myeloma. Clin. Cancer Res. 27, 6479–6490 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain, M. D. et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood 137, 2621–2633 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casneuf, T. et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 1, 2105–2114 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monaco, G. et al. RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 26, 1627–1640.e1627 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedrich, M. J. et al. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell 41, 711–725.e6 (2023).

Dwivedi, A. K., Mallawaarachchi, I. & Alvarado, L. A. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method. Stat. Med. 36, 2187–2205 (2017).

Article  PubMed  Google Scholar 

Hofman, I. J. F. et al. RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response. Leukemia 31, 1706–1714 (2017).

Article  CAS  PubMed  Google Scholar 

Walker, B. A. et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 33, 159–170 (2019).

Article  CAS  PubMed  Google Scholar 

Gambella, M. et al. High XBP1 expression is a marker of better outcome in multiple myeloma patients treated with bortezomib. Haematologica 99, e14–e16 (2014).

Article 

留言 (0)

沒有登入
gif