PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors

Tsimberidou, A. M., Fountzilas, E., Nikanjam, M. & Kurzrock, R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 86, 102019 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, K., Xiao, C., Glass, L. M. & Critchlow, C. M. Machine learning applications for therapeutic tasks with genomics data. Patterns 2, 100328 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhinder, B., Gilvary, C., Madhukar, N. S. & Elemento, O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 11, 900–915 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singla, N. & Singla, S. Harnessing big data with machine learning in precision oncology. Kidney Cancer J. 18, 83–84 (2020).

PubMed  PubMed Central  Google Scholar 

Senft, D., Leiserson, M. D. M., Ruppin, E. & Ronai, Z. Precision oncology: the road ahead. Trends Mol. Med. 23, 874–898 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Tsimberidou, A. M., Fountzilas, E., Bleris, L. & Kurzrock, R. Transcriptomics and solid tumors: the next frontier in precision cancer medicine. Semin. Cancer Biol. 84, 50–59 (2022).

Article  CAS  PubMed  Google Scholar 

Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

Article  CAS  PubMed  Google Scholar 

Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

Article  CAS  PubMed  Google Scholar 

Sawabata, N. Circulating tumor cells: from the laboratory to the cancer clinic. Cancers 12, 3065 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Beaubier, N. et al. Integrated genomic profiling expands clinical options for patients with cancer. Nat. Biotechnol. 37, 1351–1360 (2019).

Article  CAS  PubMed  Google Scholar 

Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodon, J. et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat. Med. 25, 751–758 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanioka, M. et al. Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer. Clin. Cancer Res. 24, 5292–5304 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaske, O. M. et al. Comparative tumor RNA sequencing analysis for difficult-to-treat pediatric and young adult patients with cancer. JAMA Netw. Open 2, e1913968 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).

Article  CAS  PubMed  Google Scholar 

Lee, J. S. et al. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell 184, 2487–2502 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinstag, G. et al. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med 4, 15–30.e8 (2023).

Castro, L. N. G., Tirosh, I. & Suvà, M. L. Decoding cancer biology one cell at a time. Cancer Discov. 11, 960–970 (2021).

Article  CAS  PubMed Central  Google Scholar 

Wensink, G. E. et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. npj Precis. Oncol. 5, 30 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26 (2020).

Article  CAS  PubMed  Google Scholar 

de Witte, C. J. et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter-and intrapatient drug responses. Cell Rep. 31, 107762 (2020).

Article  PubMed  Google Scholar 

Shalek, A. K. & Benson, M. Single-cell analyses to tailor treatments. Sci. Transl. Med. 9, eaan4730 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Adam, G. et al. Machine learning approaches to drug response prediction: challenges and recent progress. npj Precis. Oncol. 4, 19 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Zhu, S. et al. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget 8, 53763–53779 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kim, K. T. et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol. 17, 80 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Suphavilai, C. et al. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome Med. 13, 189 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fustero-Torre, C. et al. Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data. Genome Med. 13, 187 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ianevski, A. et al. Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Sci. Adv. 7, eab4038 (2021).

Article  Google Scholar 

Cohen, Y. C. et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 27, 491–503 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ledergor, G. et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat. Med. 24, 1867–1876 (2018).

Article  CAS  PubMed  Google Scholar 

Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plana, D., Palmer, A. C. & Sorger, P. K. Independent drug action in combination therapy: implications for precision oncology. Cancer Discov. 12, 606–624 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, W. et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res. 41, D955–D961 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systemat

Comments (0)

No login
gif