Tsimberidou, A. M., Fountzilas, E., Nikanjam, M. & Kurzrock, R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 86, 102019 (2020).
Article CAS PubMed PubMed Central Google Scholar
Huang, K., Xiao, C., Glass, L. M. & Critchlow, C. M. Machine learning applications for therapeutic tasks with genomics data. Patterns 2, 100328 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bhinder, B., Gilvary, C., Madhukar, N. S. & Elemento, O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 11, 900–915 (2021).
Article CAS PubMed PubMed Central Google Scholar
Singla, N. & Singla, S. Harnessing big data with machine learning in precision oncology. Kidney Cancer J. 18, 83–84 (2020).
PubMed PubMed Central Google Scholar
Senft, D., Leiserson, M. D. M., Ruppin, E. & Ronai, Z. Precision oncology: the road ahead. Trends Mol. Med. 23, 874–898 (2017).
Article PubMed PubMed Central Google Scholar
Tsimberidou, A. M., Fountzilas, E., Bleris, L. & Kurzrock, R. Transcriptomics and solid tumors: the next frontier in precision cancer medicine. Semin. Cancer Biol. 84, 50–59 (2022).
Article CAS PubMed Google Scholar
Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).
Article CAS PubMed Google Scholar
Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).
Article CAS PubMed Google Scholar
Sawabata, N. Circulating tumor cells: from the laboratory to the cancer clinic. Cancers 12, 3065 (2020).
Article PubMed PubMed Central Google Scholar
Beaubier, N. et al. Integrated genomic profiling expands clinical options for patients with cancer. Nat. Biotechnol. 37, 1351–1360 (2019).
Article CAS PubMed Google Scholar
Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rodon, J. et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat. Med. 25, 751–758 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tanioka, M. et al. Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer. Clin. Cancer Res. 24, 5292–5304 (2018).
Article CAS PubMed PubMed Central Google Scholar
Vaske, O. M. et al. Comparative tumor RNA sequencing analysis for difficult-to-treat pediatric and young adult patients with cancer. JAMA Netw. Open 2, e1913968 (2019).
Article PubMed PubMed Central Google Scholar
Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).
Article CAS PubMed Google Scholar
Lee, J. S. et al. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell 184, 2487–2502 (2021).
Article CAS PubMed PubMed Central Google Scholar
Dinstag, G. et al. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med 4, 15–30.e8 (2023).
Castro, L. N. G., Tirosh, I. & Suvà, M. L. Decoding cancer biology one cell at a time. Cancer Discov. 11, 960–970 (2021).
Article CAS PubMed Central Google Scholar
Wensink, G. E. et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. npj Precis. Oncol. 5, 30 (2021).
Article PubMed PubMed Central Google Scholar
Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26 (2020).
Article CAS PubMed Google Scholar
de Witte, C. J. et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter-and intrapatient drug responses. Cell Rep. 31, 107762 (2020).
Shalek, A. K. & Benson, M. Single-cell analyses to tailor treatments. Sci. Transl. Med. 9, eaan4730 (2017).
Article PubMed PubMed Central Google Scholar
Adam, G. et al. Machine learning approaches to drug response prediction: challenges and recent progress. npj Precis. Oncol. 4, 19 (2020).
Article PubMed PubMed Central Google Scholar
Zhu, S. et al. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget 8, 53763–53779 (2017).
Article PubMed PubMed Central Google Scholar
Kim, K. T. et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol. 17, 80 (2016).
Article PubMed PubMed Central Google Scholar
Suphavilai, C. et al. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome Med. 13, 189 (2021).
Article CAS PubMed PubMed Central Google Scholar
Fustero-Torre, C. et al. Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data. Genome Med. 13, 187 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ianevski, A. et al. Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Sci. Adv. 7, eab4038 (2021).
Cohen, Y. C. et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 27, 491–503 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ledergor, G. et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat. Med. 24, 1867–1876 (2018).
Article CAS PubMed Google Scholar
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).
Article CAS PubMed PubMed Central Google Scholar
Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).
Article CAS PubMed PubMed Central Google Scholar
Plana, D., Palmer, A. C. & Sorger, P. K. Independent drug action in combination therapy: implications for precision oncology. Cancer Discov. 12, 606–624 (2022).
Article CAS PubMed PubMed Central Google Scholar
Yang, W. et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res. 41, D955–D961 (2012).
Article PubMed PubMed Central Google Scholar
Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).
Article CAS PubMed PubMed Central Google Scholar
Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systemat
Comments (0)