ASH2L upregulation contributes to diabetic endothelial dysfunction in mice through STEAP4-mediated copper uptake

Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17:121. https://doi.org/10.1186/s12933-018-0763-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang T, Li H, Ouyang C, Cao G, Gao J, Wu J, et al. Liver kinase B1 inhibits smooth muscle calcification via high mobility group box 1. Redox Biol. 2021;38:101828. https://doi.org/10.1016/j.redox.2020.101828.

Article  CAS  PubMed  Google Scholar 

Niu C, Chen Z, Kim KT, Sun J, Xue M, Chen G, et al. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy. 2019;15:843–70. https://doi.org/10.1080/15548627.2019.1569913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67. https://doi.org/10.1124/pharmrev.120.000096.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Liu J, Tian XY, Wong WT, Chen Y, Wang L, et al. Inhibition of bone morphogenic protein 4 restores endothelial function in db/db diabetic mice. Arterioscler Thromb Vasc Biol. 2014;34:152–9. https://doi.org/10.1161/ATVBAHA.113.302696.

Article  CAS  PubMed  Google Scholar 

Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13:110. https://doi.org/10.1186/s13045-020-00946-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng X, Yang W, Huang L, Cheng H, Ge X, Zan G, et al. Causal effect of genetically determined blood copper concentrations on multiple diseases: a Mendelian randomization and phenome-wide association study. Phenomics. 2022;2:242–53. https://doi.org/10.1007/s43657-022-00052-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang YJ. Copper and homocysteine in cardiovascular diseases. Pharmacol Ther. 2011;129:321–31. https://doi.org/10.1016/j.pharmthera.2010.11.004.

Article  CAS  PubMed  Google Scholar 

Yin R, Wang H, Li C, Wang L, Lai S, Yang X, et al. Induction of apoptosis and autosis in cardiomyocytes by the combination of homocysteine and copper via NOX-mediated p62 expression. Cell Death Discov. 2022;8:75. https://doi.org/10.1038/s41420-022-00870-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunes KZ, Fioresi M, Marques VB, Vassallo DV. Acute copper overload induces vascular dysfunction in aortic rings due to endothelial oxidative stress and increased nitric oxide production. J Toxicol Environ Health A. 2018;81:218–28. https://doi.org/10.1080/15287394.2018.1437490.

Article  CAS  PubMed  Google Scholar 

Zhang H, Yan C, Yang Z, Zhang W, Niu Y, Li X, et al. Alterations of serum trace elements in patients with type 2 diabetes. J Trace Elem Med Biol. 2017;40:91–6. https://doi.org/10.1016/j.jtemb.2016.12.017.

Article  CAS  PubMed  Google Scholar 

Li P, Yin J, Zhu Y, Li S, Chen S, Sun T, et al. Association between plasma concentration of copper and gestational diabetes mellitus. Clin Nutr. 2019;38:2922–7. https://doi.org/10.1016/j.clnu.2018.12.032.

Article  CAS  PubMed  Google Scholar 

Yang F, Pei R, Zhang Z, Liao J, Yu W, Qiao N, et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol Vitr. 2019;54:310–6. https://doi.org/10.1016/j.tiv.2018.10.017.

Article  CAS  Google Scholar 

Jiang C, Wu B, Xue M, Lin J, Hu Z, Nie X, Cai G. Inflammation accelerates copper-mediated cytotoxicity through induction of six-transmembrane epithelial antigens of prostate 4 expression. Immunol Cell Biol. 2021;99:392–402. https://doi.org/10.1111/imcb.12427.

Article  CAS  PubMed  Google Scholar 

Scarl RT, Lawrence CM, Gordon HM, Nunemaker CS. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 2017;234:R123–R134. https://doi.org/10.1530/JOE-16-0594.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900. https://doi.org/10.1038/s41467-020-14698-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai P-H, Chien Y, Wang M-L, Hsu C-H, Laurent B, Chou S-J, et al. Ash2l interacts with Oct4-stemness circuitry to promote super-enhancer-driven pluripotency network. Nucleic Acids Res. 2019;47:10115–33. https://doi.org/10.1093/nar/gkz801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi Y, Westfield GH, Oleskie AN, Trievel RC, Shilatifard A, Skiniotis G. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA. 2011;108:20526–31. https://doi.org/10.1073/pnas.1109360108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steward MM, Lee J-S, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol. 2006;13:852–4. https://doi.org/10.1038/nsmb1131.

Article  CAS  PubMed  Google Scholar 

Wu Y-J, Ko B-S, Liang S-M, Lu Y-J, Jan Y-J, Jiang S-S, et al. ZNF479 downregulates metallothionein-1 expression by regulating ASH2L and DNMT1 in hepatocellular carcinoma. Cell Death Dis. 2019;10:408. https://doi.org/10.1038/s41419-019-1651-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng K, Wu Y, Wang C, Wang S, Sun H, Zou R, et al. ASH2L is involved in promotion of endometrial cancer progression via upregulation of PAX2 transcription. Cancer Sci. 2020;111:2062–77. https://doi.org/10.1111/cas.14413.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han P, Gao D, Zhang W, Liu S, Yang S, Li X. Puerarin suppresses high glucose-induced MCP-1 expression via modulating histone methylation in cultured endothelial cells. Life Sci. 2015;130:103–7. https://doi.org/10.1016/j.lfs.2015.02.022.

Article  CAS  PubMed  Google Scholar 

Yang D, Xiao C, Long F, Wu W, Huang M, Qu L, et al. Fra-1 plays a critical role in angiotensin II-induced vascular senescence. FASEB J. 2019;33:7603–14. https://doi.org/10.1096/fj.201801671RRRR.

Article  CAS  PubMed  Google Scholar 

Wu W, Wang J, Xiao C, Su Z, Su H, Zhong W, et al. SMYD2-mediated TRAF2 methylation promotes the NF-κB signaling pathways in inflammatory diseases. Clin Transl Med. 2021;11:e591. https://doi.org/10.1002/ctm2.591.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Gao L, Li Z, Ma X. MicroRNA-301a-3p promotes diabetic retinopathy via regulation of six-transmembrane epithelial antigen of prostate 4. Inflamm Res. 2021;70:445–57. https://doi.org/10.1007/s00011-020-01431-0.

Article  CAS  PubMed  Google Scholar 

Chen X, Huang Z, Zhou B, Wang H, Jia G, Liu G, Zhao H. STEAP4 and insulin resistance. Endocrine. 2014;47:372–9. https://doi.org/10.1007/s12020-014-0230-1.

Article  CAS  PubMed  Google Scholar 

Sharp PA. Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol. 2003;35:288–91. https://doi.org/10.1016/s1357-2725(02)00134-6.

Article  CAS  PubMed  Google Scholar 

Li H, Xia N, Hasselwander S, Daiber A. Resveratrol and vascular function. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20092155.

Article  PubMed  PubMed Central  Google Scholar 

Lee Y-T, Ayoub A, Park S-H, Sha L, Xu J, Mao F, et al. Mechanism for DPY30 and ASH2L intrinsically disordered regions to modulate the MLL/SET1 activity on chromatin. Nat Commun. 2021;12:2953. https://doi.org/10.1038/s41467-021-23268-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi J, Huo L, Zhu YT, Zhu Y-J. Absent, small or homeotic 2-like protein (ASH2L) enhances the transcription of the estrogen receptor α gene through GATA-binding protein 3 (GATA3). J Biol Chem. 2014;289:31373–81. https://doi.org/10.1074/jbc.M114.579839.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takizawa F, Mizutani S, Ogawa Y, Sawada N. Glucose-independent persistence of PAI-1 gene expression and H3K4 tri-methylation in type 1 diabetic mouse endothelium: implication in metabolic memory. Biochem Biophys Res Commun. 2013;433:66–72. https://doi.org/10.1016/j.bbrc.2013.02.064.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif