Schulte G, Wright SC. Frizzleds as GPCRs—more conventional than we thought! Trends Pharmacol Sci. 2018;39:828–42.
Article CAS PubMed Google Scholar
Schulte G, Kozielewicz P. Structural insight into class F receptors—what have we learnt regarding agonist-induced activation? Basic Clin Pharmacol Toxicol. 2020;126:17–24.
Article CAS PubMed Google Scholar
Schulte G. International union of basic and clinical pharmacology. LXXX. The class frizzled receptors. Pharmacol Rev. 2010;62:632–67.
Article CAS PubMed Google Scholar
Zhang J, Liu ZL, Jia JH. Mechanisms of smoothened regulation in hedgehog signaling. Cells. 2021;10:2138.
Article CAS PubMed PubMed Central Google Scholar
Zhang YX, Beachy PA. Cellular and molecular mechanisms of hedgehog signalling. Nat Rev Mol Cell Biol. 2023;24:668–87.
Article CAS PubMed Google Scholar
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol. 2022;85:107–22.
Article CAS PubMed Google Scholar
Hirai H, Matoba K, Mihara E, Arimori T, Takagi J. Crystal structure of a mammalian wnt-frizzled complex. Nat Struct Mol Biol. 2019;26:372–9.
Article CAS PubMed Google Scholar
Parsons MJ, Tammela T, Dow LE. Wnt as a sriver and dependency in cancer. Cancer Discov. 2021;11:2413–29.
Article CAS PubMed PubMed Central Google Scholar
Shaw HV, Koval A, Katanaev VL. A high-throughput assay pipeline for specific targeting of frizzled GPCRs in cancer. Methods Cell Biol. 2019;149:57–75.
Article CAS PubMed Google Scholar
Albrecht LV, Tejeda-Muñoz N, De Robertis EM. Cell biology of canonical wnt signaling. Annu Rev Cell Dev Biol. 2021;37:369–89.
Article CAS PubMed Google Scholar
Rim EY, Clevers H, Nusse R. The wnt pathway: from signaling mechanisms to synthetic modulators. Annu Rev Biochem. 2022;91:571–98.
Article CAS PubMed Google Scholar
Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene. 2002;21:6598–605.
Article CAS PubMed Google Scholar
Zeng CM, Chen Z, Fu L. Frizzled receptors as potential therapeutic targets in human cancers. Int J Mol Sci. 2018;19:1543.
Article PubMed PubMed Central Google Scholar
Nichols AS, Floyd DH, Bruinsma SP, Narzinski K, Baranski TJ. Frizzled receptors signal through G proteins. Cell Signal. 2013;25:1468–75.
Article CAS PubMed PubMed Central Google Scholar
Umar SA, Dong B, Nihal M, Chang H. Frizzled receptors in melanomagenesis: from molecular interactions to target identification. Front Oncol. 2022;12:1096134.
Article CAS PubMed PubMed Central Google Scholar
Schenkelaars Q, Fierro-Constrain L, Renard E, Hill AL, Borchiellini C. Insights into frizzled evolution and new perspectives. Evol Dev. 2015;17:160–9.
Article CAS PubMed Google Scholar
Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y, et al. Structure of human frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Elife. 2020;9:e58464.
Article CAS PubMed PubMed Central Google Scholar
Mieszczanek J, Strutt H, Rutherford TJ, Strutt D, Bienz M, Gammons MV. Selective function of the PDZ domain of dishevelled in noncanonical wnt signalling. J Cell Sci. 2022;135:259547.
Beitia GJ, Rutherford TJ, Freund SMV, Pelham HR, Bienz M, Gammons MV. Regulation of dishevelled DEP domain swapping by conserved phosphorylation sites. Proc Natl Acad Sci USA. 2021;118:e2103258118.
Article CAS PubMed PubMed Central Google Scholar
Babcock RL, Pruitt K. Letting go: Dishevelled phase separation recruits Axin to stabilize β-catenin. J Cell Biol. 2022;221:e202211001.
Article CAS PubMed PubMed Central Google Scholar
Hsieh JC, Rattner A, Smallwood PM, Nathans J. Biochemical characterization of wnt-frizzled interactions using a soluble, biologically active vertebrate wnt protein. Proc Natl Acad Sci USA. 1999;96:3546–51.
Article CAS PubMed PubMed Central Google Scholar
MacDonald BT, He X. Frizzled and LRP5/6 Receptors for wnt/β-catenin signaling. Cold Spring Harb Perspect Biol. 2012;4:a007880.
Article PubMed PubMed Central Google Scholar
González-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AMC. Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize β-catenin. Mol Cell Biol. 2004;24:4757–68.
Article PubMed PubMed Central Google Scholar
Wu CH, Nusse R. Ligand receptor interactions in the wnt signaling pathway in Drosophila. J Biol Chem. 2005;280:31340.
Tsutsumi N, Hwang S, Waghray D, Hansen S, Jude KM, Wang N, et al. Structure of the wnt-frizzled-LRP6 initiation complex reveals the basis for coreceptor discrimination. Proc Natl Acad Sci USA. 2023;120:e2218238120.
Article CAS PubMed PubMed Central Google Scholar
Logan CY, Nusse R. The wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:81–810.
Galluzzi L, Spranger S, Fuchs E, López-Soto A. Wnt signaling in cancer immunosurveillance. Trends Cell Biol. 2019;29:44–65.
Article CAS PubMed Google Scholar
Wang YS, Chang H, Rattner A, Nathans J. Frizzled receptors in development and disease. Essays Dev Biol. 2016;117:113–39.
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.
Article CAS PubMed Google Scholar
Peifer M, Polakis P. Cancer-wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science. 2000;287:1606–9.
Article CAS PubMed Google Scholar
Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 2017;18:375–88.
Article CAS PubMed PubMed Central Google Scholar
Thrasivoulou C, Millar M, Ahmed A. Activation of intracellular calcium by multiple wnt ligands and translocation of β-catenin into the nucleu. J Biol Chem. 2013;288:35651–9.
Article CAS PubMed PubMed Central Google Scholar
Xiao Q, Chen ZX, Jin XZ, Mao RY, Chen ZQ. The many postures of noncanonical wnt signaling in development and diseases. Biomed Pharmacother. 2017;93:359–69.
Article CAS PubMed Google Scholar
González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, et al. Frizzled 1 and wnt1 as new potential therapeutic targets in the traumatically injured spinal cord. Cell Mol Life Sci. 2020;7:4631–62.
Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, et al. The wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the wnt/β-catenin pathway. Oncogene. 2009;28:2245–56.
Article CAS PubMed Google Scholar
Su WM, Mo YL, Wu FP, Guo KG, Li JM, Luo YP, et al. MiR-135b reverses chemoresistance of non-small cell lung cancer cells by downregulation of FZD1. Biomed Pharmacother. 2016;84:123–9.
Article CAS PubMed Google Scholar
Yang LL, Yang ZL, Li DQ, Li ZR, Zou Q, Yuan Y, et al. Overexpression of FZD1 and CAIX are associated with invasion, metastasis, and poor-prognosis of the pancreatic ductal adenocarcinoma. Pathol Oncol Res. 2018;24:899–906.
Article CAS PubMed Google Scholar
Peng Q, Wang L, Zhao DF, Lv YL, Wang HZ, Chen G, et al. Overexpression of FZD1 is associated with a good prognosis and resistance of sunitinib in clear cell renal cell carc
Comments (0)