Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, et al. Long-term control of HIV by CCR5Δ32/Δ32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.
Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. 2019;568:244–8.
Article CAS PubMed PubMed Central Google Scholar
Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, et al. Research priorities for an HIV cure: international AIDS society global scientific strategy 2021. Nat Med. 2021;27:2085–98.
Article CAS PubMed Google Scholar
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, et al. The reservoir of latent HIV. Front Cell Infect Microbiol. 2022;12:945–6.
Simonetti FR, Sobolewski MD, Fyne E, Shao W, Spindler J, Hattori J, et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci USA. 2016;113:1883–8.
Article CAS PubMed PubMed Central Google Scholar
Saag MS, Kilby JM. HIV-1 and HAART: a time to cure, a time to kill. Nat Med. 1999;5:609–11.
Article CAS PubMed Google Scholar
Li M, Budai MM, Chen M, Wang J. Targeting HIV-1 reservoirs in T cell subsets. Front Immunol. 2023;14:1087923.
Article CAS PubMed PubMed Central Google Scholar
Perkins MJ, Bradley WP, Lalani T, Agan BK, Whitman TJ, Ferguson TM, et al. Brief report: prevalence of posttreatment controller phenotype is rare in HIV-infected persons after stopping antiretroviral therapy. J Acquir Immune Defic Syndr. 2017;75:364–9.
Article PubMed PubMed Central Google Scholar
Lee GQ, Orlova-Fink N, Einkauf K, Chowdhury FZ, Sun X, Harrington S, et al. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells. J Clin Invest. 2017;127:2689–96.
Article PubMed PubMed Central Google Scholar
Dai W, Wu F, McMyn N, Song B, Walker-Sperling VE, Varriale J, et al. Genome-wide CRISPR screens identify combinations of candidate latency reversing agents for targeting the latent HIV-1 reservoir. Sci Transl Med. 2022;14:h3351.
Kim Y, Anderson JL, Lewin SR. Getting the “kill” into “shock and kill”: strategies to eliminate latent HIV. Cell Host Microbe. 2018;23:14–26.
Article CAS PubMed PubMed Central Google Scholar
Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1. Science. 2016;353:aaf6517.
Article PubMed PubMed Central Google Scholar
Abner E, Jordan A. HIV “shock and kill” therapy: In need of revision. Antivir Res. 2019;166:19–34.
Article CAS PubMed Google Scholar
Victoriano AF, Okamoto T. Transcriptional control of HIV replication by multiple modulators and their implication for a novel antiviral therapy. AIDS Res Hum Retroviruses. 2012;28:125–38.
Article CAS PubMed Google Scholar
Lian X, Seiger KW, Parsons EM, Gao C, Sun W, Gladkov GT, et al. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host Microbe. 2023;31:83–96.
Article CAS PubMed PubMed Central Google Scholar
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-and-lock strategies to cure HIV infection. Viruses. 2020;12:84.
Article CAS PubMed PubMed Central Google Scholar
Li C, Mori L, Valente ST. The block-and-lock strategy for human immunodeficiency virus cure: lessons learned from didehydro–cortistatin A. J Infect Dis. 2021;223:46–53.
Mousseau G, Mediouni S, Valente ST. Targeting HIV transcription: the quest for a functional cure. Curr Top Microbiol Immunol. 2015;389:121–45.
CAS PubMed PubMed Central Google Scholar
Mediouni S, Chinthalapudi K, Ekka MK, Usui I, Jablonski JA, Clementz MA, et al. Didehydro-cortistatin A inhibits HIV-1 by specifically binding to the unstructured basic region of Tat. mBio. 2019;10:10–1128.
Ling L, Leda AR, Begum N, Spagnuolo RA, Wahl A, Garcia JV, et al. Loss of in vivo replication fitness of HIV-1 variants resistant to the Tat inhibitor, dCA. Viruses. 2023;15:950.
Article CAS PubMed PubMed Central Google Scholar
Davidson A, Leeper TC, Athanassiou Z, Patora-Komisarska K, Karn J, Robinson JA, et al. Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc Natl Acad Sci USA. 2009;106:11931–6.
Article CAS PubMed PubMed Central Google Scholar
Karn J. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV AIDS. 2011;6:4–11.
Article PubMed PubMed Central Google Scholar
Mediouni S, Jablonski J, Paris JJ, Clementz MA, Thenin-Houssier S, McLaughlin JP, et al. Didehydro-cortistatin A inhibits HIV-1 Tat-mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Curr HIV Res. 2015;13:64–79.
Article CAS PubMed PubMed Central Google Scholar
Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 2003;22:1868–77.
Article CAS PubMed PubMed Central Google Scholar
Cai J, Gao H, Zhao J, Hu S, Liang X, Yang Y, et al. Infection with a newly designed dual fluorescent reporter HIV-1 effectively identifies latently infected CD4+ T cells. Elife. 2021;10:e63810.
Article CAS PubMed PubMed Central Google Scholar
Smith BD, Kaufman MD, Lu WP, Gupta A, Leary CB, Wise SC, et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell. 2019;35:738–51.
Article CAS PubMed Google Scholar
Zalcberg JR. Ripretinib for the treatment of advanced gastrointestinal stromal tumor. Ther Adv Gastroenterol. 2021;14:1088191153.
Villanueva MT. Ripretinib turns off the switch in GIST. Nat Rev Drug Discov. 2019;18:499.
Article CAS PubMed Google Scholar
Wan Z, Chen X. Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology. 2014;11:1–13.
Huang T, Cai J, Wang P, Zhou J, Zhang H, Wu Z, et al. Ponatinib represses latent HIV-1 by inhibiting AKT-mTOR. Antimicrob Agents Chemother. 2023;67:e00067–23.
Article PubMed PubMed Central Google Scholar
Yang HC, Xing S, Shan L, O’Connell K, Dinoso J, Shen A, et al. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest. 2009;119:3473–86.
CAS PubMed PubMed Central Google Scholar
Anderson I, Low JS, Weston S, Weinberger M, Zhyvoloup A, Labokha AA, et al. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci USA. 2014;111:1528–37.
Pande V, Ramos M. Nuclear factor kappa B: a potential target for anti-HIV chemotherapy. Curr Med Chem. 2003;10:1603–15.
Article CAS PubMed Google Scholar
Budhiraja S, Rice AP. Reactivation of latent HIV: do all roads go through P-TEFb? Future Virol. 2013;8:649–59.
Gupta AK, Li B, Cerniglia GJ, Ahmed MS, Hahn SM, Maity A, et al. The HIV protease inhibitor nelfinavir downregulates Akt phosphorylation by inhibiting proteasomal activity and inducing the unfolded protein response. Neoplasia. 2007;9:271–8.
Article CAS PubMed PubMed Central Google Scholar
Chugh P, Bradel-Tretheway B, Monteiro-Filho CM, Planelles V, Maggirwar SB, Dewhurst S, et al. Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy. Retrovirology. 2008;5:1–13.
Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 2002;62:5230–5.
Pasquereau S, Herbein G. CounterAKTing HIV: toward a “block and clear” strategy? Front Cell Infect Microbiol. 2022;12:827717.
Comments (0)