Role of thrombospondin-1 in high-salt–induced mesenteric artery endothelial impairment in rats

Pilic L, Pedlar CR, Mavrommatis Y. Salt-sensitive hypertension: mechanisms and effects of dietary and other lifestyle factors. Nutr Rev. 2016;74:645–58.

Article  PubMed  Google Scholar 

Rust P, Ekmekcioglu C. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Biol. 2017;956:61–84.

Article  PubMed  Google Scholar 

Feng W, Dell’Italia LJ, Sanders PW. Novel paradigms of salt and hypertension. J Am Soc Nephrol. 2017;28:1362–9.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kozina N, Mihaljevic Z, Loncar MB, Mihalj M, Misir M, Radmilovic MD, et al. Impact of high salt diet on cerebral vascular function and stroke in Tff3-/-/C57BL/6N knockout and WT (C57BL/6N) control mice. Int J Mol Sci. 2019;20:1–25.

Article  CAS  Google Scholar 

Cosic A, Jukic I, Stupin A, Mihalj M, Mihaljevic Z, Novak S, et al. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet. J Physiol. 2016;594:4917–31.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Raffai G, Durand MJ, Lombard JH. Acute and chronic angiotensin-(1-7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am J Physiol Heart Circ Physiol. 2011;301:H1341–1352.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Rogers NM, Sharifi-Sanjani M, Yao M, Ghimire K, Bienes-Martinez R, Mutchler SM, et al. TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovasc Res. 2017;113:15–29.

Article  CAS  PubMed  Google Scholar 

Shimoda LA, Kuebler WM. ‘Hypoxio-spondin’: thrombospondin and its emerging role in pulmonary hypertension. Cardiovasc Res. 2016;109:1–3.

Article  CAS  PubMed  Google Scholar 

Buda V, Andor M, Cristescu C, Tomescu MC, Muntean DM, Baibata DE, et al. Thrombospondin-1 serum levels in hypertensive patients with endothelial dysfunction after one year of treatment with perindopril. Drug Des Devel Ther. 2019;13:3515–26.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Matsuo Y, Tanaka M, Yamakage H, Sasaki Y, Muranaka K, Hata H, et al. Thrombospondin 1 as a novel biological marker of obesity and metabolic syndrome. Metabolism. 2015;64:1490–9.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Rogers NM, Ghimire K, Calzada MJ, Isenberg JS. Matricellular protein thrombospondin-1 in pulmonary hypertension: multiple pathways to disease. Cardiovasc Res. 2017;113:858–68.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Motegi K, Harada K, Ohe G, Jones SJ, Ellis IR, Crouch DH, et al. Differential involvement of TGF-beta1 in mediating the motogenic effects of TSP-1 on endothelial cells, fibroblasts and oral tumour cells. Exp Cell Res. 2008;314:2323–33.

Article  CAS  PubMed  Google Scholar 

Yafai Y, Eichler W, Iandiev I, Unterlauft JD, Jochmann C, Wiedemann P, et al. Thrombospondin-1 is produced by retinal glial cells and inhibits the growth of vascular endothelial cells. Ophthalmic Res. 2014;52:81–88.

Article  CAS  PubMed  Google Scholar 

Zak S, Treven J, Nash N, Gutierrez LS. Lack of thrombospondin-1 increases angiogenesis in a model of chronic inflammatory bowel disease. Int J Colorectal Dis. 2008;23:297–304.

Article  PubMed  Google Scholar 

Venkatraman L, Tucker-Kellogg L. The CD47-binding peptide of thrombospondin-1 induces defenestration of liver sinusoidal endothelial cells. Liver Int. 2013;33:1386–97.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, et al. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res. 2010;88:471–81.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kim J, Lee KS, Kim JH, Lee DK, Park M, Choi S, et al. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis in preeclampsia. Free Radic Biol Med. 2017;104:185–98.

Article  CAS  PubMed  Google Scholar 

Sessa WC. eNOS at a glance. J Cell Sci. 2004;117:2427–9.

Article  CAS  PubMed  Google Scholar 

Feletou M, Kohler R, Vanhoutte PM. Nitric oxide: orchestrator of endothelium-dependent responses. Ann Med. 2012;44:694–716.

Article  CAS  PubMed  Google Scholar 

Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol. 2013;4:1–11.

Article  CAS  Google Scholar 

Chen Z, S DSO, Zimnicka AM, Jiang Y, Sharma T, Chen S, et al. Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell. 2018;29:1190–202.

Article  PubMed Central  PubMed  Google Scholar 

Qin Y, Dong T, Jiang W, Ding W, Zhan T, Du J, et al. iTRAQ-based proteomics reveals serum protein changes in hypertensive rats induced by a high-salt diet. EXCLI J. 2020;19:1496–511.

PubMed Central  PubMed  Google Scholar 

Jiang W, Ye L, Yang Y, Wang P, Pan W, Du J, et al. TRPP2 associates with STIM1 to regulate cerebral vasoconstriction and enhance high salt intake-induced hypertensive cerebrovascular spasm. Hypertens Res. 2019;42:1894–904.

Article  CAS  PubMed  Google Scholar 

Guo J, Zhao R, Zhou M, Li J, Yao X, Du J, et al. TRPP2 and STIM1 form a microdomain to regulate store-operated Ca2+ entry and blood vessel tone. Cell Commun Signal. 2020;18:1–16.

Article  Google Scholar 

Shen B, Cheng KT, Leung YK, Kwok YC, Kwan HY, Wong CO, et al. Epinephrine-induced Ca2+ influx in vascular endothelial cells is mediated by CNGA2 channels. J Mol Cell Cardiol. 2008;45:437–45.

Article  CAS  PubMed  Google Scholar 

Suh SH, Vennekens R, Manolopoulos VG, Freichel M, Schweig U, Prenen J, et al. Characterisation of explanted endothelial cells from mouse aorta: electrophysiology and Ca2+ signalling. Pflug Arch. 1999;438:612–20.

CAS  Google Scholar 

Xin C, Ren S, Eberhardt W, Pfeilschifter J, Huwiler A. The immunomodulator FTY720 and its phosphorylated derivative activate the Smad signalling cascade and upregulate connective tissue growth factor and collagen type IV expression in renal mesangial cells. Br J Pharmacol. 2006;147:164–74.

Article  CAS  PubMed  Google Scholar 

Li W, Yong J, Xu Y, Wang Y, Zhang Y, Ren H, et al. Glutathione depletion and dual-model oxygen balance disruption for photodynamic therapy enhancement. Colloids Surf B Biointerf. 2019;183:1–10.

Article  Google Scholar 

Lee WK, Choi JK, Cha SH. Co-localization and interaction of human organic anion transporter 4 with caveolin-1 in primary cultured human placental trophoblasts. Exp Mol Med. 2008;40:505–13.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Tang EH, Feletou M, Huang Y, Man RY, Vanhoutte PM. Acetylcholine and sodium nitroprusside cause long-term inhibition of EDCF-mediated contractions. Am J Physiol Heart Circ Physiol. 2005;289:H2434–2440.

Article  CAS  PubMed  Google Scholar 

Castiglione RC, Barros C, Boa BCS, De Souza M, Bouskela E. Effects of selenium in the microcirculation of fructose-fed hamsters. J Vasc Res. 2018;55:203–9.

Article  CAS  PubMed  Google Scholar 

Daubon T, Leon C, Clarke K, Andrique L, Salabert L, Darbo E, et al. Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat Commun. 2019;10:1–15.

Article  CAS  Google Scholar 

Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998;17:3091–100.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Takekawa M, Tatebayashi K, Itoh F, Adachi M, Imai K, Saito H. Smad-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO J. 2002;21:6473–82.

Article  CAS  PubMed Central  PubMed  Google Scholar 

von Toerne C, Huth C, de Las Heras Gala T, Kronenberg F, Herder C, Koenig W, et al. MASP1, THBS1, GPLD1 and ApoA-IV are novel biomarkers associated with prediabetes: the KORA F4 study. Diabetologia. 2016;59:1882–92.

Article  Google Scholar 

Kong P, Gonzalez-Quesada C, Li N, Cavalera M, Lee DW, Frangogiannis NG. Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am J Physiol Endocrinol Metab. 2013;305:E439–450.

Article  PubMed Central  PubMed  Google Scholar 

Olerud J, Mokhtari D, Johansson M, Christoffersson G, Lawler J, Welsh N, et al. Thrombospondin-1: an islet endothelial cell signal of importance for β-cell function. Diabetes. 2011;60:1946

留言 (0)

沒有登入
gif