Beneficial applications of biofilms

Muffler, K. & Ulber, R. Productive biofilms. Adv. Biochem. Eng. Biotechnol. 146, 264 (2014).

Google Scholar 

Jo, J., Price-Whelan, A. & Dietrich, L. E. P. Gradients and consequences of heterogeneity in biofilms. Nat. Rev. Microbiol. 20, 593–607 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halan, B., Buehler, K. & Schmid, A. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol. 30, 453–465 (2012).

Article  CAS  PubMed  Google Scholar 

Schmeckebier, A., Zayed, A. & Ulber, R. Productive biofilms: from prokaryotic to eukaryotic systems. J. Chem. Technol. Biotechnol. 97, 3049–3064 (2022).

Article  CAS  Google Scholar 

Rosche, B., Li, X. Z., Hauer, B., Schmid, A. & Buehler, K. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol. 27, 636–643 (2009).

Article  CAS  Google Scholar 

Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M. & Gardner, R. D. Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res. 54, 102200 (2021).

Article  Google Scholar 

Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R. & Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).

Article  CAS  PubMed  Google Scholar 

Park, H., Schwartzman, A. F., Tang, T.-C., Wang, L. & Lu, T. K. Ultra-lightweight living structural material for enhanced stiffness and environmental sensing. Mater. Today Bio 18, 100504 (2023).

Article  CAS  PubMed  Google Scholar 

Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 28, 668–681 (2020).

Article  CAS  PubMed  Google Scholar 

Flemming, H. C. et al. The biofilm matrix: multitasking in a shared space. Nat. Rev. Microbiol. 21, 70–86 (2022).

Article  PubMed  Google Scholar 

Edwards, S. J. & Kjellerup, B. V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 97, 9909–9921 (2013).

Article  CAS  PubMed  Google Scholar 

Härrer, D., Elreedy, A., Ali, R., Hille-Reichel, A. & Gescher, J. Probing the robustness of Geobacter sulfurreducens against fermentation hydrolysate for uses in bioelectrochemical systems. Bioresour. Technol. 369, 128363 (2023).

Article  PubMed  Google Scholar 

Morgan-Sagastume, F. Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment. Crit. Rev. Env. Sci. Technol. 48, 439–470 (2018).

Article  CAS  Google Scholar 

Grießmeier, V., Wienhöfer, J., Horn, H. & Gescher, J. Assessing and modeling biocatalysis in field denitrification beds reveals key influencing factors for future constructions. Water Res. 188, 116467 (2021).

Article  PubMed  Google Scholar 

Lepine, C., Christianson, L., Davidson, J. & Summerfelt, S. Woodchip bioreactors as treatment for recirculating aquaculture systems’ wastewater: a cost assessment of nitrogen removal. Aquacult. Eng. 83, 85–92 (2018).

Article  Google Scholar 

Rittmann, B. E. Biofilms, active substrata, and me. Water Res. 132, 135–145 (2018).

Article  CAS  PubMed  Google Scholar 

Bruin, L. M. M., de, Kreuk, M. K., de, Roest, H. F. R., van der, Uijterlinde, C. & van Loosdrecht, M. C. M. Aerobic granular sludge technology: an alternative to activated sludge? Water Sci. Technol. 49, 1–7 (2004).

Article  PubMed  Google Scholar 

Tang, C. et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res. 45, 135–144 (2011).

Article  CAS  PubMed  Google Scholar 

van de Graaf, A. A. et al. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246–1251 (1995).

Article  PubMed  PubMed Central  Google Scholar 

Liu, C. et al. Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen. Water Res. 194, 116963 (2021).

Article  CAS  PubMed  Google Scholar 

Dorias, B., Hauber, G. & Baumann, P. in Biotechnology: Environmental Processes I Vol. 11, 2nd edn, Ch. 16 (eds Rehm, H.-J. & Reed, G.) (Wiley, 1999)

Wang, J., Liang, J., Ning, D., Zhang, T. & Wang, M. A review of biomass immobilization in anammox and partial nitrification/anammox systems: advances, issues, and future perspectives. Sci. Total. Environ. 821, 152792 (2022).

Article  CAS  PubMed  Google Scholar 

Ebner, H., Sellmer, S. & Follmann, H. in Biotechnology: Products of Primary Metabolism 2nd edn, Ch. 12 (eds Rehm, H.‐J. & Reed, G.) 381–401 (Wiley, 1996).

König, H. in Biotechnology Set 2nd edn (eds Rehm, H.‐J. & Reed, G.) 249–264 (Wiley, 2001).

Yuan, Q., Jia, Z., Roots, P. & Wells, G. A strategy for fast anammox biofilm formation under mainstream conditions. Chemosphere 318, 137955 (2023).

Article  CAS  PubMed  Google Scholar 

Riesenberg, D. & Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51, 422–430 (1999).

Article  CAS  PubMed  Google Scholar 

Shiloach, J. & Fass, R. Growing E. coli to high cell density—a historical perspective on method development. Biotechnol. Adv. 23, 345–357 (2005).

Article  CAS  PubMed  Google Scholar 

Shukla, S. K., Manobala, T., Rao, T. S., Shukla, S. K. & Rao, T. S. in Immobilization Strategies (eds Tripathi, A. & Melo, J. S.) 535–555 (Springer, 2021).

Morgan-Sagastume, J. M. & Noyola, A. Evaluation of an aerobic submerged filter packed with volcanic scoria. Bioresour. Technol. 99, 2528–2536 (2008).

Article  CAS  PubMed  Google Scholar 

Cuny, L. et al. Evaluation of productive biofilms for continuous lactic acid production. Biotechnol. Bioeng. 116, 2687–2697 (2019).

Article  CAS  PubMed  Google Scholar 

Zhang, Q. et al. Mechanical resilience of biofilms toward environmental perturbations mediated by extracellular matrix. Adv. Funct. Mater. 32, 2110699 (2022).

Article  CAS  Google Scholar 

Ciofu, O., Moser, C., Jensen, P. Ø. & Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 20, 621–635 (2022).

Article  CAS  PubMed  Google Scholar 

Halan, B., Schmid, A. & Buehler, K. Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl. Environ. Microb. 77, 1563–1571 (2011).

Article  CAS  Google Scholar 

Mishra, S. et al. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere 294, 133609 (2022).

Article  CAS  Google Scholar 

Darmon, E. & Leach, D. R. F. Bacterial genome instability. Microbiol. Mol. Biol. Rev. 78, 1–39 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Fraser, C., Alm, E. J., Polz, M. F., Spratt, B. G. & Hanage, W. P. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323, 741–746 (2009).

Article  CAS  PubMed  Google Scholar 

Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536, 165–170 (2016).

Article  CAS  PubMed Central  Google Scholar 

Renda, B. A., Hammerling, M. J. & Barrick, J. E. Engineering reduced evolutionary potential for synthetic biology. Mol. BioSyst. 10, 1668–1678 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akeno, Y., Ying, B. W., Tsuru, S. & Yomo, T. A reduced genome decreases the host carrying capacity for foreign DNA. Microb. Cell Fact. 13, 49 (2014).

Article  Google Scholar 

Lieder, S., Nikel, P. I., Lorenzo, Vde & Takors, R. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb. Cell Fact. 14, 23 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Umenhoffer, K. et al. Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microb. Cell Fact. 9, 38 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Csörgo, B., Fehér, T., Tímár, E., Blattner, F. R. & Pósfai, G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb. Cell Fact. 11, 11 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Xia, Y. et al. Coupled CFD‐DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions. Biotechnol. Bioeng. 119, 2551 (2022).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif