The wound microbiota: microbial mechanisms of impaired wound healing and infection

Shah, J. B. The history of wound care. J. Am. Col. Certif. Wound Spec. 3, 65–66 (2011).

PubMed  Google Scholar 

Broughton, G. II, Janis, J. E. & Attinger, C. E. A brief history of wound care. Plast. Reconstr. Surg. 117, 6S–11S (2006).

Article  CAS  PubMed  Google Scholar 

Sen, C. K. Human wounds and its burden: an updated compendium of estimates. Adv. Wound Care 8, 39–48 (2019). A comprehensive, regularly updated analysis of the economic and health burden of human wounds.

Article  Google Scholar 

Nussbaum, S. R. et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21, 27–32 (2018).

Article  PubMed  Google Scholar 

Guo, S. & Dipietro, L. A. Factors affecting wound healing. J. Dent. Res. 89, 219–229 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, G. et al. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe 29, 777–791.e6 (2021). Murine and human studies demonstrate the regenerative role of the microbiota.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uberoi, A. et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 29, 1235–1248.e8 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flowers, L. & Grice, E. A. The skin microbiota: balancing risk and reward. Cell Host Microbe 28, 190–200 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardner, S. E. & Frantz, R. A. Wound bioburden and infection-related complications in diabetic foot ulcers. Biol. Res. Nurs. 10, 44–53 (2008).

Article  PubMed  Google Scholar 

Swanson, T. et al. IWII Wound Infection in Clinical Practice consensus document: 2022 update. J. Wound Care 31, S10–S21 (2022).

Article  PubMed  Google Scholar 

Bowler, P. G., Duerden, B. I. & Armstrong, D. G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 14, 244–269 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartow-McKenney, C. et al. The microbiota of traumatic, open fracture wounds is associated with mechanism of injury. Wound Repair Regen. 26, 127–135 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Fukuta, Y., Chua, H., Phe, K., Poythress, E. L. & Brown, C. A. Infectious diseases management in wound care settings: common causative organisms and frequently prescribed antibiotics. Adv. Skin Wound Care 35, 535–543 (2022).

Article  PubMed  Google Scholar 

Gardner, S. E., Frantz, R. A. & Doebbeling, B. N. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen. 9, 178–186 (2001).

Article  CAS  PubMed  Google Scholar 

Cheong, J. Z. A. et al. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. ISME J. 15, 2012–2027 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quinn, R. A. et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci. Adv. 4, eaau1908 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Walter, J., Maldonado-Gomez, M. X. & Martinez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr. Opin. Biotechnol. 49, 129–139 (2018).

Article  CAS  PubMed  Google Scholar 

Mallon, C. A., Elsas, J. D. V. & Salles, J. F. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 23, 719–729 (2015).

Article  CAS  PubMed  Google Scholar 

Harris-Tryon, T. A. & Grice, E. A. Microbiota and maintenance of skin barrier function. Science 376, 940–945 (2022).

Article  CAS  PubMed  Google Scholar 

Cheung, G. Y. C., Bae, J. S. & Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12, 547–569 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parlet, C. P., Brown, M. M. & Horswill, A. R. Commensal staphylococci influence Staphylococcus aureus skin colonization and disease. Trends Microbiol. 27, 497–507 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding, X. et al. Challenges and innovation in treating chronic and acute wound infections: from basic science to clinical practice. Burns Trauma 10, tkac014 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Rahim, K. et al. Bacterial contribution in chronicity of wounds. Microb. Ecol. 73, 710–721 (2016).

Article  PubMed  Google Scholar 

Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367–370 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romano-Bertrand, S. et al. Dynamics of the surgical microbiota along the cardiothoracic surgery pathway. Front. Microbiol. 5, 787 (2014).

PubMed  Google Scholar 

Holder-Murray, J. et al. Time-dependent displacement of commensal skin microbes by pathogens at the site of colorectal surgery. Clin. Infect. Dis. 73, e2754–e2762 (2021).

Article  CAS  PubMed  Google Scholar 

Gupta, S. et al. Cutaneous surgical wounds have distinct microbiomes from intact skin. Microbiol. Spectr. 11, e0330022 (2023).

Article  PubMed  Google Scholar 

Wolcott, R. D. et al. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen. 24, 163–174 (2016). One of the largest studies to date profiling the microbiota of chronic wounds using molecular approaches.

Article  PubMed  Google Scholar 

Loesche, M. et al. Temporal stability in chronic wound microbiota is associated with poor healing. J. Invest. Dermatol. 137, 237–244 (2017).

Article  CAS  PubMed  Google Scholar 

Tipton, C. D. et al. Temporal dynamics of relative abundances and bacterial succession in chronic wound communities. Wound Repair Regen. 25, 673–679 (2017).

Article  PubMed  Google Scholar 

Kalan, L. R. et al. Strain- and species-level variation in the microbiome of diabetic wounds is associated with clinical outcomes and therapeutic efficacy. Cell Host Microbe 25, 641–655.e5 (2019). Shotgun metagenomic study of diabetic foot ulcers identifies microbial features associated with healing outcomes, including strain-level diversity.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sloan, T. J. et al. Examining diabetic heel ulcers through an ecological lens: microbial community dynamics associated with healing and infection. J. Med. Microbiol. 68, 230–240 (2019).

Article  CAS  PubMed  Google Scholar 

Min, K. R. et al. Association between baseline abundance of Peptoniphilus, a Gram-positive anaerobic coccus, and wound healing outcomes of DFUs. PLoS ONE 15, e0227006 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verbanic, S., Shen, Y., Lee, J., Deacon, J. M. & Chen, I. A. Microbial predictors of healing and short-term effect of debridement on the microbiome of chronic wounds. NPJ Biofilms Microbiomes 6, 21 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Citron, D. M., Goldstein, E. J., Merriam, C. V., Lipsky, B. A. & Abramson, M. A. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. Clin. Microbiol. 45, 2819–2828 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Malone, M. et al. Next generation DNA sequencing of tissues from infected diabetic foot ulcers. EBioMedicine 21, 142–149 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardner, S. E., Hillis, S. L., Heilmann, K., Segre, J. A. & Grice, E. A. The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes 62, 923–930 (2013).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif