Gram, L. et al. Food spoilage—interactions between food spoilage bacteria. Int. J. Food Microbiol. 78, 79–97 (2002).
Snyder, A. B., Churey, J. J. & Worobo, R. W. Association of fungal genera from spoiled processed foods with physicochemical food properties and processing conditions. Food Microbiol. 83, 211–218 (2019).
Article CAS PubMed Google Scholar
Martin, N. H., Murphy, S. C., Ralyea, R. D., Wiedmann, M. & Boor, K. J. When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. J. Dairy. Sci. 94, 3176–3183 (2011).
Article CAS PubMed Google Scholar
United Nations. UN: 17% of all food available at consumer levels is wasted. UN Environment Programme https://www.unep.org/news-and-stories/press-release/un-17-all-food-available-consumer-levels-wasted (2021).
Food and Agriculture Organization of the United Nations. Food wastage footprint: full cost-accounting. Food and Agriculture Organization https://www.fao.org/3/i3991e/i3991e.pdf (2014).
Quested, T., Ingle, R. & Parry, A. Household food and drink waste in the United Kingdom 2012. wrap https://wrap.org.uk/sites/default/files/2020-12/Household-Food-and-Drink-Waste-in-the-United-Kingdom-2012.pdf (2013).
Bilska, B., Tomaszewska, M. & Kołożyn-Krajewska, D. Analysis of the behaviors of Polish consumers in relation to food waste. Sustainability 12, 304 (2020).
Bjorkroth, K. J. & Korkeala, H. J. Lactobacillus fructivorans spoilage of tomato ketchup. J. Food Prot. 60, 505–509 (1997).
Adams, D. M., Barach, J. T. & Speck, M. L. Heat resistant proteases produced in milk by psychrotrophic bacteria of dairy origin. J. Dairy. Sci. 58, 828–834 (1975).
Article CAS PubMed Google Scholar
Stoeckel, M. et al. Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. Int. Dairy. J. 59, 20–28 (2016).
Circella, E. et al. Pseudomonas azotoformans belonging to Pseudomonas fluorescens group as causative agent of blue coloration in carcasses of slaughterhouse rabbits. Animals 10, 256 (2020).
Article PubMed PubMed Central Google Scholar
Ben Mhenni, N., Alberghini, G., Giaccone, V., Truant, A. & Catellani, P. Prevalence and antibiotic resistance phenotypes of Pseudomonas spp. in fresh fish fillets. Foods 12, 950 (2023).
Article PubMed PubMed Central Google Scholar
Prinčič, L., Orsi, R. H., Martin, N. H., Wiedmann, M. & Trmčić, A. Phenotypic and genomic characterization of Klebsiella pneumoniae ssp. pneumoniae and Rahnella inusitata strains reveals no clear association between genetic content and ropy phenotype. J. Dairy. Sci. 107, 1370–1385 (2023).
Snyder, A. B. & Worobo, R. W. Fungal spoilage in food processing. J. Food Prot. 81, 1035–1040 (2018).
Malfeito-Ferreira, M. & Silva, A. C. in Yeasts in the Production of Wine (eds Romano, P., Ciani, M. & Fleet, G. H.) 375–394 (Springer, 2019).
Raposo, A., Pérez, E., de Faria, C. T., Ferrús, M. A. & Carrascosa, C. in Foodborne Pathogens and Antibiotic Resistance (ed. Singh, O. V.) 41–71 (Wiley, 2016).
Wiedmann, M., Weilmeier, D., Dineen, S. S., Ralyea, R. & Boor, K. J. Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl. Env. Microbiol. 66, 2085–2095 (2000).
Parlapani, F. F. et al. Growth and volatile organic compound production of Pseudomonas fish spoiler strains on fish juice agar model substrate at different temperatures. Microorganisms 11, 189 (2023).
Article CAS PubMed PubMed Central Google Scholar
Munsch, P., Geoffroy, V. A., Alatossava, T. & Meyer, J. M. Application of siderotyping for characterization of Pseudomonas tolaasii and “Pseudomonas reactans” isolates associated with brown blotch disease of cultivated mushrooms. Appl. Env. Microbiol. 66, 4834–4841 (2000).
Hansen, K. M. J. & Bautista, D. A. in Encyclopedia of Food Microbiology (eds Robinson, R. K., Batt, C. A. & Patel, P. D.) 2051–2056 (Academic, 1999).
Marsili, R. in Encyclopedia of Dairy Sciences 2nd edn (ed. Fuquay, J. W.) 533–551 (Academic, 2011).
Machado, S. G. et al. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Front. Microbiol. 8, 302 (2017).
García-López, M. L., Santos, J. A., Otero, A. & Rodríguez-Calleja, J. M. in Encyclopedia of Food Microbiology 2nd edn (ed. Batt, C. A. & Tortorello, M. L.) 261–268 (Academic, 2014).
Betts, G. in Food Spoilage Microorganisms (ed. Blackburn, C. D. W.) 668–693 (Woodhead, 2006).
Kameník, J. The microbiology of meat spoilage: a review. Maso Int. J. Food Sci. Technol. 1, 3–10 (2013).
Tournas, V. H. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit. Rev. Microbiol. 31, 33–44 (2005).
Article CAS PubMed Google Scholar
Alegbeleye, O., Odeyemi, O. A., Strateva, M. & Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2, 100122 (2022).
Dalgaard, P., Mejlholm, O., Christiansen, T. J. & Huss, H. H. Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett. Appl. Microbiol. 24, 373–378 (1997).
Säde, E., Murros, A. & Björkroth, J. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol. 34, 252–258 (2013).
Heyndrickx, M. The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing. Appl. Environ. Soil Sci. https://doi.org/10.1155/2011/561975 (2011).
Wells-Bennik, M. H. et al. Bacterial spores in food: survival, emergence, and outgrowth. Annu. Rev. Food Sci. Technol. 7, 457–482 (2016).
Article CAS PubMed Google Scholar
Carlin, F. Origin of bacterial spores contaminating foods. Food Microbiol. 28, 177–182 (2011).
Martin, N. H., Torres-Frenzel, P. & Wiedmann, M. Invited review: controlling dairy product spoilage to reduce food loss and waste. J. Dairy. Sci. 104, 1251–1261 (2021).
Article CAS PubMed Google Scholar
Trmčić, A., Martin, N. H., Boor, K. J. & Wiedmann, M. A standard bacterial isolate set for research on contemporary dairy spoilage. J. Dairy. Sci. 98, 5806–5817 (2015).
Gopal, N. et al. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front. Microbiol. 6, 1418 (2015).
Article PubMed PubMed Central Google Scholar
André, S., Zuber, F. & Remize, F. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey. Int. J. Food Microbiol. 165, 134–143 (2013).
Scheldeman, P., Herman, L., Foster, S. & Heyndrickx, M. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J. Appl. Microbiol. 101, 542–555 (2006).
Article CAS PubMed Google Scholar
Durak, M. Z., Churey, J. J., Danyluk, M. D. & Worobo, R. W. Identification and haplotype distribution of Alicyclobacillus spp. from different juices and beverages. Int. J. Food Microbiol. 142, 286–291 (2010).
Article CAS PubMed Google Scholar
Sourri, P., Tassou, C. C., Nychas, G.-J. E. & Panagou, E. Z. Fruit juice spoilage by Alicyclobacillus: detection and control methods—a comprehensive review. Foods 11, 747 (2022).
Article CAS PubMed PubMed Central Google Scholar
Roth, K. et al. Alicyclobacillus mali sp. nov., Alicyclobacillus suci sp. nov. and Alicyclobacillus fructus sp. nov., thermoacidophilic sporeforming bacteria isolated from fruit beverages. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijsem.0.005016 (2021).
Cui, X., Joannou, C. L., Hughes, M. N. & Cammack, R. The bacteriocidal effects of transition metal complexes containing the NO+ group on the food-spoilage bacterium Clostridium sporogenes. FEMS Microbiol. Lett. 98, 67–70 (1992).
Palevich, N. et al. Comparative genomics of Clostridium species associated with vacuum-packed meat spoilage. Food Microbiol. 95, 103687 (2021).
Article CAS PubMed Google Scholar
Broda, D. M., Boerema, J. A. & Brightwell, G. Sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats, as determined by PCR amplification procedure. J. Appl. Microbiol. 107, 178–186 (2009).
Article CAS PubMed Google Scholar
Wambui, J., Cernela, N., Stevens, M. J. A. & Stephan, R. Whole genome sequence-based identification of Clostridium estertheticum complex strains supports the need for taxonomic reclassification within the species Clostridium estertheticum. Front. Microbiol. 12, 727022 (2021).
Article PubMed PubMed Central Google Scholar
Haas, K. N. & Blanchard, J. L. Reclassification of the Clostridium clostridioforme and Clostridium sphenoides clades as Enterocloster gen. nov. and Lacrimispora gen. nov., including reclassification of 15 taxa. Int. J. Syst. Evol. Microbiol. 70, 23–34 (2020).
Article CAS PubMed Google Scholar
Weigand, M. R. et al. Implications of genome-based discrimination between Clostridium botulinum Group I and Clostridium sporogenes strains for bacterial taxonomy. Appl. Env. Microbiol. 81, 5420–5429 (2015).
Smith, T. J., Schill, K. M. & Williamson, C. H. D. Navigating the complexities involving the identification of botulinum neurotoxins (BoNTs) and the taxonomy of BoNT-producing Clostridia. Toxins 15, 545 (2023).
Article CAS PubMed PubMed Central Google Scholar
Húngaro, H. M., Caturla, M. Y. R., Horita, C. N., Furtado, M. M. & Sant’Ana, A. S. Blown pack spoilage in vacuum-packaged meat: a review on clostridia as causative agents, sources, detection methods, contributing factors and mitigation strategies. Trends Food Sci. Technol. 52, 123–138 (2016).
Comments (0)