Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements

Nowell, P. C. & Hungerford, D. A. Minute chromosome in human chronic granulocytic leukemia. Science 132, 1497–1497 (1960).

Google Scholar 

Kaung, D. T. & Swartzendruber, A. A. Effect of chemotherapeutic agents on chromosomes of patients with lung cancer. Dis. Chest 55, 98–100 (1969).

Article  CAS  PubMed  Google Scholar 

Van Steenis, H. Chromosomes and cancer. Nature 209, 819–821 (1966).

Article  PubMed  Google Scholar 

Ishihara, T., Kikuchi, Y. & Sandberg, A. A. Chromosomes of twenty cancer effusions: correlation of karyotypic, clinical, and pathologic aspects. J. Natl Cancer Inst. 30, 1303–1361 (1963).

CAS  PubMed  Google Scholar 

Rowley, J. D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

Article  CAS  PubMed  Google Scholar 

Thompson, S. L. & Compton, D. A. Chromosomes and cancer cells. Chromosome Res. 19, 433–444 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Frohling, S. & Dohner, H. Chromosomal abnormalities in cancer. N. Engl. J. Med. 359, 722–734 (2008).

Article  CAS  PubMed  Google Scholar 

Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

Article  CAS  PubMed  Google Scholar 

Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

Article  CAS  PubMed  Google Scholar 

Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

Article  CAS  PubMed  Google Scholar 

Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

Article  CAS  PubMed  Google Scholar 

Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holland, A. J. & Cleveland, D. W. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 18, 1630–1638 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This study reported the discovery of chromothripsis and established potential mechanisms and consequences of massive chromosome rearrangements.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013). Korbel and Campbell proposed a set of criteria to distinguish chromothripsis from other rearrangements.

Article  CAS  PubMed  Google Scholar 

Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012). This study identified cell division errors to be a main cause of chromothripsis.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015). This study introduced single-cell genomic analysis combined with live-cell imaging (‘Look-Seq’) to follow genomic rearrangements, including chromothripsis, associated with micronuclei.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021). This study established chromothripsis as a key contributor to therapy-induced gene amplification in cancer, including the generation of ecDNAs.

Article  CAS  PubMed  Google Scholar 

Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2017).

Article  CAS  PubMed  Google Scholar 

Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

Article  PubMed  PubMed Central  Google Scholar 

Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

Article  CAS  PubMed  Google Scholar 

Magrangeas, F., Avet-Loiseau, H., Munshi, N. C. & Minvielle, S. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118, 675–678 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortes-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020). This study (as a part of the PCAWG Consortium) performed a pan-cancer analysis of chromothripsis, establishing its very high prevalence in cancer.

Article  CAS  PubMed  PubMed Central  Google Scholar 

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

Article  CAS  Google Scholar 

Voronina, N. et al. The landscape of chromothripsis across adult cancer types. Nat. Commun. 11, 2320 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasnic, R. & Linial, M. Chromoanagenesis landscape in 10,000 TCGA patients. Cancers 13, 4197 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao, L., Zhong, X., Yang,

留言 (0)

沒有登入
gif