A new steroid with potent antimicrobial activities and two new polyketides from Penicillium variabile EN-394, a fungus obtained from the marine red alga Rhodomela confervoides

Yilmaz N, et al. Taxonomic re-evaluation of species in Talaromyces section Islandici, using a polyphasic approach. Persoonia 2016;36:37–56.

Article  CAS  PubMed  Google Scholar 

Dong YS, et al. Cathepsin B inhibitory tetraene lactones from the fungus Talaromyces wortmannii. Helv Chim Acta. 2009;92:567–74.

Article  CAS  Google Scholar 

Benjamin CR. Ascocarps of Aspergillus and Penicillium. Mycologia 1955;47:669–87.

Article  Google Scholar 

Petruccioli M, Federici F. Glucose oxidase production by Penicillium variabile P16: effect of medium composition. J Appl Microbiol. 1993;75:369–72.

CAS  Google Scholar 

He XQ, et al. Varilactones and wortmannilactones produced by Penicillium variabile cultured with histone deacetylase inhibitor. Arch Pharm Res. 2018;41:57–63.

Article  CAS  PubMed  Google Scholar 

Dong YS, et al. Wortmannilactones A–D, 22-membered triene macrolides from Talaromyces wortmannii. J Nat Prod. 2006;69:128–30.

Article  CAS  PubMed  Google Scholar 

He XQ, et al. Varitatin A, a highly modified fatty acid amide from Penicillium variabile cultured with a DNA methyltransferase inhibitor. J Nat Prod. 2015;78:2841–5.

Article  CAS  PubMed  Google Scholar 

Zhelifonova VP, Antipova TV, Ozerskaya SM, Ivanushkina NE, Kozlovskii AG. The fungus Penicillium variabile Sopp 1912 isolated from permafrost deposits as a producer of rugulovasines. Microbiology 2006;75:644–8.

Article  CAS  Google Scholar 

Shao YT, et al. New azaphilones from Penicillium variabile, a fungal endophyte from roots of Aconitum vilmorinianum. J Antibiot. 2020;73:77–81.

Article  CAS  Google Scholar 

Abe M. Rugulovasine: U. S. Patent No. 3,651,220. Washington, DC: U. S. Patent and Trademark Office; 1972.

Google Scholar 

Liu H, et al. Chermesins A–D: meroterpenoids with a drimane-type spirosesquiterpene skeleton from the marine algal-derived endophytic fungus Penicillium chermesinum EN-480. J Nat Prod. 2016;79:806–11.

Article  CAS  PubMed  Google Scholar 

Zhang FZ, Li XM, Yang SQ, Meng LH, Wang BG. Thiocladospolides A−D, 12-membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and structure revision of pandangolide 3. J Nat Prod. 2019;82:1535–41.

Article  CAS  PubMed  Google Scholar 

Yang SQ, et al. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy. J Antibiot. 2018;71:778–84.

Article  CAS  Google Scholar 

Li HL, et al. Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 co-cultured with symbiotic fungus Paecilomyces lilacinus EN-531. J Antibiot. 2020;73:108–11.

Article  CAS  Google Scholar 

Cui CM, et al. 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J Nat Prod. 2010;73:1780–4.

Article  CAS  PubMed  Google Scholar 

D’Auria MV, et al. Unique 3β-O-methylsterols from the pacific sponge Jereicopsis Graphidiophora. J Nat Prod. 1992;55:311–20.

Article  Google Scholar 

Matsumori N, Kaneno D, Murata M, Nakamura H, Tachibana K. Stereochemical determination of acyclic structures based on carbon-proton spin-coupling constants. A method of configuration analysis for natural products. J Org Chem. 1999;64:866–76.

Article  CAS  PubMed  Google Scholar 

Barrero AF, et al. Oxygenated diterpenes and other constituents from Moroccan Juniperus phoenicea and Juniperus thurifera var. africana. Phytochemistry 2004;65:2507–15.

Article  CAS  PubMed  Google Scholar 

Sims JJ, Pettus JA. Isolation of free cis and trans-phytol from the red alga Gracilaria Andersoniana. Phytochemistry 1976;15:1076–7.

Article  CAS  Google Scholar 

Kim CS, et al. Structural characterization of terpenoids from Abies holophylla using computational and statistical methods and their biological activities. J Nat Prod. 2018;81:1795–802.

Article  CAS  PubMed  Google Scholar 

Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem. 2015;8:12526–34.

Article  Google Scholar 

Smith SG, Goodman JM. Assigning Stereochemistry to Single Diastereoisomers by GIAO NMR Calculation: The DP4 Probability. J Am Chem Soc. 2010;132:12946–59.

Article  CAS  PubMed  Google Scholar 

Lu T, Chen FW. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–92.

Article  PubMed  Google Scholar 

Crystallographic data of compound 1 have been deposited in the Cambridge Crystallographic Data Centre as CCDC 1906035. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/ data request/cif (or from the CCDC, 12 Union Road, Cambridge CB21EZ, U.K.; fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Sheldrick GM. SADABS, Software for empirical absorption correction. Germany: University of Gottingen; 1996.

Google Scholar 

Sheldrick GM. SHELXTL, Structure determination software programs. Madison, WI: Bruker Analytical X-ray System Inc.; 1997.

Google Scholar 

Sheldrick GM. SHELXL-97 and SHELXS-97, program for X-ray crystal structure solution and refinement. Germany: University of Gottingen; 1997.

Google Scholar 

Gaussian 16, Revision C.01, Frisch MJ, et al. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492, 2019.

Pierce CG, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3:1494–500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif