New antimalarial iromycin analogs produced by Streptomyces sp. RBL-0292

Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415:673–9.

Article  CAS  PubMed  Google Scholar 

World Health Organization, World Malaria Report 2022. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022

Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria. Lancet. 2018;391:1608–21.

Article  PubMed  Google Scholar 

Hayashi Y, Fukasawa W, Hirose T, Iwatsuki M, Hokari R, Ishiyama A, et al. Kozupeptins, antimalarial agents produced by Paracamarosporium species: Isolation, structural elucidation, total synthesis, and bioactivity. Org Lett. 2019;21:2180–4.

Article  CAS  PubMed  Google Scholar 

Ishiyama A, Hokari R, Nonaka K, Chiba T, Miura H, Otoguro K, et al. Diatretol, an α, α’-dioxo-diketopiperazine, is a potent in vitro and in vivo antimalarial. J Antibiot. 2021;74:266–8.

Article  CAS  Google Scholar 

Ouchi T, Watanabe Y, Nonaka K, Muramatsu R, Noguchi C, Tozawa M, et al. Clonocoprogens A, B and C, new antimalarial coprogens from the Okinawan fungus Clonostachys compactiuscula FKR-0021. J Antibiot. 2020;73:365–71.

Article  CAS  Google Scholar 

Watanabe Y, Hachiya K, Ikeda A, Nonaka K, Higo M, Muramatsu R, et al. Koshidacins A and B, antiplasmodial cyclic tetrapeptides from the Okinawan fungus Pochonia boninensis FKR-0564. J Nat Prod. 2022;85:2641–9.

Article  CAS  PubMed  Google Scholar 

Watanabe Y, Arakawa E, Kondo N, Nonaka K, Ikeda A, Hirose T, et al. New antimalarial fusarochromanone analogs produced by the fungal strain Fusarium sp. FKI-9521. J Antibiot. 2023;76:384–91.

Article  CAS  Google Scholar 

Inahashi Y, Matsumoto A, Danbara H, Ōmura S, Takahashi Y. Phytohabitans suffuscus gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae isolated from plant roots. Int J Syst Evol Microbiol. 2010;60:2652–8.

Article  CAS  PubMed  Google Scholar 

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otoguro K, Ui H, Ishiyama A, Arai N, Kobayashi M, Takahashi Y, et al. In vitro antimalarial activities of the microbial metabolites. J Antibiot. 2003;56:322–4.

Article  Google Scholar 

Otoguro K, Kohana A, Manabe C, Ishiyama A, Ui H, Shiomi K, et al. Potent antimalarial activities of polyether antibiotic, X-206. J Antibiot. 2001;54:658–63.

Article  CAS  Google Scholar 

Surup F, Wagner O, von Frieling J, Schleicher M, Oess S, Müller P, et al. The iromycins, a new family of pyridone metabolites from Streptomyces sp. I. Structure, NOS inhibitory activity, and biosynthesis. J Org Chem. 2007;72:5085–90.

Article  CAS  PubMed  Google Scholar 

Surup F, Shojaei H, von Zezschwitz P, Kunze B, Grond S. Iromycins from Streptomyces sp. and from synthesis: New inhibitors of the mitochondrial electron transport chain. Bioorg Med Chem. 2008;16:1738–46.

Article  CAS  PubMed  Google Scholar 

Sukenaga Y, Yamazaki T, Aoyama T, Takayasu Y, Harada T. JP1997-55460, 1997.

Ostera G, Tokumasu F, Oliveira F, Sa J, Furuya T, Teixeira C, et al. Plasmodium falciparum: food vacuole localization of nitric oxide-derived species in intraerythrocytic stages of the malaria parasite. Exp Parasitol. 2008;120:29–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghigo D, Todde R, Ginsburg H, Costamagna C, Gautret P, Bussolino F, et al. Erythrocyte stages of Plasmodium falciparum exhibit a high nitric oxide synthase (NOS) activity and release an NOS-inducing soluble factor. J Exp Med. 1995;182:677–88.

Article  CAS  PubMed  Google Scholar 

Hempel C, Kohnke H, Maretty L, Jensen PØ, Staalsø T, Kurtzhals JAL. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity. Mol Biochem Parasitol. 2014;198:29–36.

Article  CAS  PubMed  Google Scholar 

Schnermann MJ, Romero FA, Hwang I, Nakamaru-Ogiso E, Yagi T, Boger DL. Total synthesis of piericidin A1 and B1 and key analogues. J Am Chem Soc. 2006;128:11799–807.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ui H, Shiomi K, Suzuki H, Hatano H, Morimoto H, Yamaguchi Y, et al. Verticipyrone, a new NADH-fumarate reductase inhibitor, produced by Verticillium sp. FKI-1083. J Antibiot. 2006;59:785–90.

Article  CAS  Google Scholar 

Ke H, Ganesan SM, Dass S, Morrisey JM, Pou S, Nilsen A, et al. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS One. 2019;14:e0214023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif