In vitro and ex vivo activity of the fluoroquinolone DC-159a against mycobacteria

Murray CJL, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399:629–55.

Article  CAS  Google Scholar 

WHO. WHO Global Tuberculosis Report. 2020. https://www.who.int/publications/i/item/9789240013131.

CDC. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs worldwide. MMWR Morb Mortal Wkly Rep. 2006;55:301–5.

Google Scholar 

WHO. WHO Extensively drug-resistant tuberculosis (XDR.TB): recommendations for prevention and control. Wkly Epidemiol Rec. 2006;81:430–2.

Google Scholar 

Nahid P, et al. Treatment of drug-resistant tuberculosis. an official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med. 2020;201:500–1.

Article  ADS  Google Scholar 

Imperiale BR, Di Giulio AB, Cataldi AA, Morcillo NS. Evaluation of Mycobacterium tuberculosis cross-resistance to isoniazid, rifampicin and levofloxacin with their respective structural analogs. J Antibiot. 2014;67:749–54.

Article  CAS  Google Scholar 

Cheng AF, et al. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2004;48:596–601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 2003;51:1109–17.

Article  CAS  PubMed  Google Scholar 

Hooper DC, Wolfson JS. Fluoroquinolone antimicrobial agents. N. Engl J Med. 1991;324:384–94.

Article  CAS  PubMed  Google Scholar 

Falkinham JO 3rd. Nontuberculous mycobacteria in the environment. Clin Chest Med. 2002;23:529–51.

Article  PubMed  Google Scholar 

Simons S, et al. Nontuberculous mycobacteria in respiratory tract infections. Eastern Asia. Emerg Infect Dis. 2011;17:343–9.

Article  PubMed  PubMed Central  Google Scholar 

Prevots DR, Marras TK. Epidemiology of human pulmonary infection with non-tuberculous mycobacteria: a review. Clin Chest Med. 2015;36:13–34.

Article  PubMed  Google Scholar 

Henkle E, Hedberg K, Schafer SD, Winthrop KL. Surveillance of extrapulmonary nontuberculous mycobacteria infections, Oregon, USA, 2007–2012. Emerg Infect Dis. 2017;23:1627–30.

Article  PubMed  PubMed Central  Google Scholar 

Brode SK, Marchaund-Austin A, Jamieson FB, Marras TK. Pulmonary versus nonpulmonary nontuberculous Mycobacteria, Ontario, Canada. Emerg Infect Dis. 2017;23:1898–901.

Article  PubMed  PubMed Central  Google Scholar 

Cassidy PM, Hedberg K, Saulson A, McNelly E, Winthrop KL. Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin Infect Dis. 2009;49:e124–e9.

Article  PubMed  Google Scholar 

To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and Mycobacterium abscessus. J Clin Med. 2020;9:254.

Article  Google Scholar 

Hoefsloot W, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42:1604–13.

Article  PubMed  Google Scholar 

Karakousis PC, Moore RD, Chaisson RE. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect Dis. 2004;9:557–965.

Article  Google Scholar 

Imperiale B, et al. Disease caused by non-tuberculous mycobacteria: diagnostic procedures and treatment evaluation in the North of Buenos Aires Province. Rev Argent Microbiol. 2012;44:3–9.

PubMed  Google Scholar 

Falkingham JO. Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev. 1996;9:177–215.

Article  Google Scholar 

Imperiale BR, et al. Genetic diversity of Mycobacterium avium complex strains isolated in Argentina by MIRU-VNTR. Epidemiol Infect. 2017;145:1382–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Zaatari FA, Osato MS, Graham DY. Etiology of Crohn’s disease: the role of Mycobacterium avium paratuberculosis. Trends Mol Med. 2001;7:247–52.

Article  CAS  PubMed  Google Scholar 

Thorel MF, Krichevsky M, Lévy-Frébault VV. Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp avium subsp nov, Mycobacterium avium subsp paratuberculosis subsp nov, and Mycobacterium avium subsp silvaticum subsp nov. Int J Syst Bacteriol. 1990;40:254–60.

Article  CAS  PubMed  Google Scholar 

Alvarez J, et al. Genetic diversity of Mycobacterium avium isolates recovered from clinical samples and from the environment: molecular characterization for diagnostic purposes. J Clin Microbiol. 2008;46:1246–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin A, Colmant A, Verroken A, Rodriguez-Villalobos H. Laboratory diagnosis of nontuberculous mycobacteria in a Belgium Hospital. Int J Mycobacteriol. 2019;8:157–61.

Article  CAS  PubMed  Google Scholar 

Prevots DR, Loddenkemper R, Sotgiu G, Migliori GB. Non tuberculous mycobacterial pulmonary disease: an increasing burden with substantial costs. Eur Respir J. 2017;49:1700374.

Article  PubMed  Google Scholar 

Piersimoni C, Scarparo C. Pulmonary infections associated with non-tuberculous mycobacteria in immunocompetent patients. Lancet Infect Dis. 2008;8:323–34.

Article  PubMed  Google Scholar 

García García JM, Gutiérrez Palacios JJ, Sánchez Antuña AA. Respiratory infections caused by environmental mycobacteria. Arch Bronconeumol. 2005;4:206–19.

Google Scholar 

Hoshino K, et al. In vitro and in vivo antibacterial activities of DC-159a, a new fluoroquinolone. Antimicrob Agents Chemother. 2008;52:65–76.

Article  CAS  PubMed  Google Scholar 

Disratthakit A, Doi N. In vitro activities of DC-159a, a novel fluoroquinolone, against Mycobacterium species. Antimicrob Agents Chemother. 2010;54:2684–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamaguchi T, Yokoyama K, Nakajima C, Suzuki Y. DC-159a shows inhibitory activity against DNA gyrases of Mycobacterium leprae. PLoS Negl Trop Dis. 2016;10:e0005013. 28

Article  PubMed  PubMed Central  Google Scholar 

Koide K, et al. Antibacterial activity of DC-159a against Salmonella Typhimurium. Micro Drug Resist. 2019;25:14–22.

Article  CAS  Google Scholar 

Cynamon M, Sklaney MR, Shoene C. Gatifloxacin in combination with rifampicin in a murine tuberculosis model. J Antimicrob Chemother. 2007;60:429–32.

Article  CAS  PubMed  Google Scholar 

Nuermberger EL, et al. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med. 2003;169:421–6.

Article  PubMed  Google Scholar 

Drlica K, Zhao X, Kreiswirth B. Minimising moxifloxacin resistance with tuberculosis. Lancet Infect Dis. 2008;8:273–5.

Article  PubMed  Google Scholar 

Martin A, et al. Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs. Int J Tuberc Lung Dis. 2005;9:901–6.

CAS  PubMed  Google Scholar 

Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J. 2004;23:327–33.

Article  CAS  PubMed  Google Scholar 

Schleimer RP, et al. Epithelium, inflammation, and immunity in the upper airways of humans: studies in chronic rhinosinusitis. Proc Am Thorac Soc. 2009;6:288–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strieter RM, Belperio JA, Keane MP. Host innate defenses in the lung: the role of cytokines. Curr Opin Infect Dis. 2003;16:193–8.

Article  CAS  PubMed  Google Scholar 

Kamerbeek J, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imperiale BR, Zumárraga MJ, Di Giulio AB, Cataldi AA, Morcillo NS. Molecular and phenotypic characterisation of Mycobacterium tuberculosis resistant to anti-tuberculosis drugs. Int J Tuberc Lung Dis. 2013;17:1088–93.

Article  CAS  PubMed  Google Scholar 

Moyano RD, et al. Genetic diversity of Mycobacterium avium sp. paratuberculosis by mycobacterial interspersed repetitive Unit-Variable number tandem repeat and multi-locus short-sequence repeat. Int J Mycobacteriol. 2021;10:51–9.

Article  CAS 

Comments (0)

No login
gif