Immunogenetics, sylvatic plague and its vectors: insights from the pathogen reservoir Mastomys natalensis in Tanzania

Andrianaivoarimanana V, Rajerison M, Jambou R (2018) Exposure to Yersinia pestis increases resistance to plague in black rats and modulates transmission in Madagascar. BMC Res Notes 11:898. https://doi.org/10.1186/s13104-018-3984-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrianaivoarimanana V, Telfer S, Rajerison M et al (2012) Immune responses to plague infection in wild Rattus rattus, in Madagascar: a role in foci persistence? PLoS ONE 7:e38630. https://doi.org/10.1371/journal.pone.0038630

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahmanyar M, Cavanaugh DC, World Health Organization (1976) Plague manual. Switzerland, Geneva

Google Scholar 

Bai Y, Osikowicz LM, Kosoy MY et al (2017) Comparison of zoonotic bacterial agents in fleas collected from small mammals or host-seeking fleas from a Ugandan region where plague is endemic. mSphere 2: e00402–17. https://doi.org/10.1128/mSphere.00402-17

Banda A, Gandiwa E, Muboko N, Muposhi VK (2022) Prevalence of Yersinia pestis among rodents captured in a semi-arid tropical ecosystem of south-western Zimbabwe. Open Life Sci 17:1038–1042. https://doi.org/10.1515/biol-2022-0359

Article  PubMed  PubMed Central  Google Scholar 

Bartoń K (2022) MuMIn: Multi-model inference, R package version 1.47.1. CRAN. https://cran.r-project.org/package=MuMIn

Benedictow OJ (2004) The Black death, 1346–1353: the complete history. Woodbridge: Boydell press

Bracamonte SE, Hofmann MJ, Lozano-Martín C et al (2022) Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 22:41. https://doi.org/10.1186/s12862-022-01997-9

Article  PubMed  PubMed Central  Google Scholar 

Bron GM, Malavé CM, Boulerice JT et al (2019) Plague-positive mouse fleas on mice before plague induced die-offs in black-tailed and white-tailed prairie dogs. Vector-Borne Zoonotic Dis 19:486–493. https://doi.org/10.1089/vbz.2018.2322

Article  PubMed  Google Scholar 

Choi S, Rhie G, Jeon JH (2020) Development of a double-antibody sandwich ELISA for sensitive detection of Yersinia pestis. Microbiol Immunol 64:72–75. https://doi.org/10.1111/1348-0421.12751

Article  CAS  PubMed  Google Scholar 

Chu MC (2000) Laboratory manual of plague diagnostic tests. Ft. World Health Organization, Collins, Colorado

Google Scholar 

Cobble KR, Califf KJ, Stone NE et al (2016) Genetic variation at the MHC DRB1 locus is similar across Gunnison’s prairie dog (Cynomys gunnisoni ) colonies regardless of plague history. Ecol Evol 6:2624–2651. https://doi.org/10.1002/ece3.2077

Article  PubMed  PubMed Central  Google Scholar 

Cohen S (2002) Strong positive selection and habitat-specific amino acid substitution patterns in MHC from an estuarine fish under intense pollution stress. Mol Biol Evol 19:1870–1880. https://doi.org/10.1093/oxfordjournals.molbev.a004011

Article  CAS  PubMed  Google Scholar 

Colman RE, Brinkerhoff RJ, Busch JD et al (2021) No evidence for enzootic plague within black-tailed prairie dog (Cynomys ludovicianus) populations. Integr Zool 16:834–851. https://doi.org/10.1111/1749-4877.12546

Article  PubMed  PubMed Central  Google Scholar 

Danforth M, Tucker J, Novak M (2018) The deer mouse (Peromyscus maniculatus) as an enzootic reservoir of plague in California. EcoHealth 15:566–576. https://doi.org/10.1007/s10393-018-1337-2

Article  PubMed  Google Scholar 

Ditchburn J-L, Hodgkins R (2019) Yersinia pestis, a problem of the past and a re-emerging threat. Biosaf Health 1:65–70. https://doi.org/10.1016/j.bsheal.2019.09.001

Article  Google Scholar 

Doytchinova IA, Guan P, Flower DR (2004) Identifying human MHC supertypes using bioinformatic methods. J Immunol 172:4314–4323. https://doi.org/10.4049/jimmunol.172.7.4314

Article  CAS  PubMed  Google Scholar 

Dromigny J, Ralafiarisoa L, Raharimanana C et al (1998) La sérologie anti-F1 chez la souris OF1, test complémentaire pour le diagnostic de la peste humaine [Anti-F1 serology in OF1 mice, a complementary test for the diagnosis of human plague]. Arch Inst Pasteur Madagascar 164:18–20

Dunnet G, Mardon D (1974) A monograph of Australian fleas (Siphonaptera). Aust J Zool Suppl Ser 22:1. https://doi.org/10.1071/AJZS030

Article  Google Scholar 

Ehlers J, Krüger A, Rakotondranary SJ et al (2020) Molecular detection of Rickettsia spp., Borrelia spp., Bartonella spp. and Yersinia pestis in ectoparasites of endemic and domestic animals in southwest Madagascar. Acta Trop 205:105339. https://doi.org/10.1016/j.actatropica.2020.105339

Eisen RJ, Atiku LA, Enscore RE et al (2021) Epidemiology, ecology, and prevention of plague in the West Nile region of Uganda: the value of long-term field studies. Am J Trop Med Hyg 105:18–23. https://doi.org/10.4269/ajtmh.20-1381

Article  PubMed  PubMed Central  Google Scholar 

Eisen RJ, Gage KL (2009) Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res 40:01. https://doi.org/10.1051/vetres:2008039

Article  PubMed  Google Scholar 

Eizaguirre C, Lenz TL, Kalbe M, Milinski M (2012) Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecol Lett 15:723–731. https://doi.org/10.1111/j.1461-0248.2012.01791.x

Article  PubMed  PubMed Central  Google Scholar 

Eren AM, Maignien L, Sul WJ et al (2013) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4:1111–1119. https://doi.org/10.1111/2041-210X.12114

Article  PubMed  PubMed Central  Google Scholar 

Esmaeili S, Esmaeili P, Mahmoudi A et al (2023) Serological evidence of Yersinia pestis infection in rodents and carnivores in Northwestern Iran. PLoS Negl Trop Dis 17:e0011021. https://doi.org/10.1371/journal.pntd.0011021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleischer R, Schmid DW, Wasimuddin Braendel SD et al (2022) Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Mol Ecol 31:3342–3359. https://doi.org/10.1111/mec.16491

Article  PubMed  Google Scholar 

Froeschke G, Sommer S (2005) MHC class II DRB Variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol Biol Evol 22:1254–1259. https://doi.org/10.1093/molbev/msi112

Article  CAS  PubMed  Google Scholar 

Gaczorek TS, Marszałek M, Dudek K et al (2023) Interspecific introgression of MHC genes in Triturus newts: evidence from multiple contact zones. Mol Ecol 32:867–880. https://doi.org/10.1111/mec.16804

Article  CAS  PubMed  Google Scholar 

Gaigher A, Burri R, San-Jose LM et al (2019) Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol Ecol 28:5115–5132. https://doi.org/10.1111/mec.15276

Article  PubMed  Google Scholar 

Gaigher A, Rota A, Neves F et al (2023) Extensive MHC class IIβ diversity across multiple loci in the small-spotted catshark (Scyliorhinus canicula). Sci Rep 13:3837. https://doi.org/10.1038/s41598-023-30876-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gebrezgiher GB, Makundi RH, Katakweba AAS et al (2023) Arthropod ectoparasites of two rodent species occurring in varied elevations on Tanzania’s second highest mountain. Biology 12:394. https://doi.org/10.3390/biology12030394

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillingham MAF, Montero BK, Wihelm K et al (2021) A novel workflow to improve genotyping of multigene families in wildlife species: an experimental set-up with a known model system. Mol Ecol Resour 21:982–998. https://doi.org/10.1111/1755-0998.13290

Article  CAS  PubMed  Google Scholar 

Goüy de Bellocq J, Leirs H (2009) Complementary DNA sequences encoding the multimammate rat MHC class II DQ α and β chains and cross-species sequence comparison in rodents. Tissue Antigens 74:233–237. https://doi.org/10.1111/j.1399-0039.2009.01305.x

Article  CAS  PubMed  Google Scholar 

Goüy de Bellocq J, Leirs H (2010) Polymorphism and signatures of selection in the multimammate rat DQB gene. Immunogenetics 62:59–64. https://doi.org/10.1007/s00251-009-0411-x

Article  CAS  PubMed  Google Scholar 

Griffith DM, Veech JA, Marsh CJ (2016) Cooccur: probabilistic species co-occurrence analysis in R. J Stat Softw 69. https://doi.org/10.18637/jss.v069.c02

Haikukutu L, Lyaku JR, Lyimo C et al (2022) Plague in Tanzania: first report of sylvatic plague in Morogoro region, persistence in Mbulu focus, and ongoing quiescence in Lushoto and Iringa foci. IJID Reg 4:105–110. https://doi.org/10.1016/j.ijregi.2022.06.006

Article  PubMed  PubMed Central  Google Scholar 

Hang’ombe BM, Nakamura I, Samui KL et al (2012) Evidence of Yersinia pestis DNA from fleas in an endemic plague area of Zambia. BMC Res Notes 5:72. https://doi.org/10.1186/1756-0500-5-72

Hang’ombe BM, Ziwa M, Haule M et al (2014) Surveillance and diagnosis of plague and anthrax in Tanzania and Zambia. Onderstepoort J Vet Res 81:1 page. https://doi.org/10.4102/ojvr.v81i2.722

Hau D, Wade B, Lovejoy C et al (2022) Development of a dual antigen lateral flow immunoassay for detecting Yersinia pestis. PLoS Negl Trop Dis 16:e0010287. https://doi.org/10.1371/journal.pntd.0010287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haule M (2013) Investigation of fleas as vectors in the transmission of plague during a quiescent period in North-Eastern, Tanzania. J Entomol Nematol 5:88–93. https://doi.org/10.5897/JEN2013.0083

Article  Google Scholar 

Haule M, Hang’ombe BM, Lyamuya EF et al (2014) Studies of reservoirs and vectors of plague in Northeastern. Tanzania Int J Infect Dis 21:142. https://doi.org/10.1016/j.ijid.2014.03.721

Herdegen-Radwan M, Phillips KP, Babik W et al (2021) Balancing selection versus allele and supertype turnover in MHC class II genes in guppies. Heredity 126:548–560. https://doi.org/10.1038/s41437-020-00369-7

Article  CAS  PubMed 

留言 (0)

沒有登入
gif