Ávalos Y, Hernández-Cáceres MP, Lagos P, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Joy-Immediato M, Venegas-Zamora L, Lopez-Gallardo E et al (2022) Palmitic acid control of ciliogenesis modulates insulin signaling in hypothalamic neurons through an autophagy-dependent mechanism. Cell Death Dis 13. https://doi.org/10.1038/s41419-022-05109-9
Article CAS PubMed PubMed Central Google Scholar
Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A (2018) Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 12
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581. https://doi.org/10.1128/mcb.00166-09
Article CAS PubMed PubMed Central Google Scholar
Bidault G, Virtue S, Petkevicius K, Jolin HE, Dugourd A, Guénantin AC, Leggat J, Mahler-Araujo B, Lam BYH, Ma MK et al (2021) SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. Nat Metab 3:1150–1162. https://doi.org/10.1038/s42255-021-00440-5
Article CAS PubMed PubMed Central Google Scholar
Bok S, Kim YE, Woo Y, Kim S, Kang SJ, Lee Y, Park SK, Weissman IL, Ahn GO (2017) Hypoxia-inducible factor-1a regulates microglial functions affecting neuronal survival in the acute phase of ischemic stroke in mice. Oncotarget 8:111508–111521. https://doi.org/10.18632/oncotarget.22851
Bonilla DL, Bhattacharya A, Sha Y, Xu Y, Xiang Q, Kan A, Jagannath C, Komatsu M, Eissa NT (2013) Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39:537–547. https://doi.org/10.1016/j.immuni.2013.08.026
Article CAS PubMed PubMed Central Google Scholar
Burtscher J, Mallet RT, Burtscher M Millet P (2021) Hypoxia and brain aging : neurodegeneration or neuroprotection? 68. https://doi.org/10.1016/j.arr.2021.101343
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95:11715–11720. https://doi.org/10.1073/pnas.95.20.11715
Article ADS CAS PubMed PubMed Central Google Scholar
Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138. https://doi.org/10.1074/jbc.M001914200
Article CAS PubMed Google Scholar
Chen R, Lai UH, Zhu L, Singh A, Ahmed M, Forsyth NR (2018) Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors. Front Cell Dev Biol 6
Chinetti G, Lestavel S, Remaley A, Neve B, Torra I, Minnich A, Jaye M, Duverger N, Brewer H, Fruchart J et al (2000) PPAR alpha and PPAR gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABC-1 pathway. Circulation 102:311–311
Colville-Nash PR, Qureshi SS, Willis D, Willoughby DA (1998) Inhibition of inducible nitric oxide synthase by peroxisome proliferator-activated receptor agonists: correlation with induction of heme oxygenase 1. J Immunol 161:978–984. https://doi.org/10.4049/jimmunol.161.2.978
Article CAS PubMed Google Scholar
Dragano NR, Monfort-Pires M, Velloso LA (2020) Mechanisms mediating the actions of fatty acids in the hypothalamus. Neuroscience 447:15–27
Article CAS PubMed Google Scholar
Halder SK, Milner R (2020) Mild hypoxia triggers transient blood–brain barrier disruption: a fundamental protective role for microglia. Acta Neuropathol Commun 8. https://doi.org/10.1186/s40478-020-01051-z
Article CAS PubMed PubMed Central Google Scholar
Harris J, Hartman M, Roche C, Zeng SG, O’Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J et al (2011) Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J Biol Chem 286:9587–9597. https://doi.org/10.1074/jbc.M110.202911
Article CAS PubMed PubMed Central Google Scholar
Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519. https://doi.org/10.1038/nn1805
Article CAS PubMed Google Scholar
Hegdekar N, Sarkar C, Bustos S, Ritzel RM, Hanscom M, Ravishankar P, Philkana D, Wu J, Loane DJ, Lipinski MM (2023) Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes. Autophagy 19:2026–2044. https://doi.org/10.1080/15548627.2023.2167689
Article CAS PubMed PubMed Central Google Scholar
Hu C, Wang L, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1α ( HIF-1α) and HIF-2α in hypoxic gene regulation 23:9361–9374. https://doi.org/10.1128/MCB.23.24.9361
Huang J, Gao L, Li B, Liu C, Hong S, Min J, Hong L (2019) Knockdown of hypoxia-inducible factor 1α (HIF-1α) promotes autophagy and inhibits phosphatidylinositol 3-kinase (PI3K)/AKT/ mammalian target of rapamycin (mTOR) signaling pathway in ovarian cancer cells. Med Sci Monit 25:4250–4263. https://doi.org/10.12659/MSM.915730
Article CAS PubMed PubMed Central Google Scholar
Ivacko JA, Sun R, Silverstein FS (1996) Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res 39:39–47. https://doi.org/10.1203/00006450-199601000-00006
Article CAS PubMed Google Scholar
Jiao M, Ren F, Zhou L, Zhang X, Zhang L, Wen T, Wei L, Wang X, Shi H, Bai L et al (2014) Peroxisome proliferator-activated receptor α activation attenuates the inflammatory response to protect the liver from acute failure by promoting the autophagy pathway. Cell Death Dis 5. https://doi.org/10.1038/cddis.2014.361
Article CAS PubMed PubMed Central Google Scholar
Korbecki J, Bajdak-Rusinek K (2019) The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res Off J Eur Histamine Res Soc 68:915–932. https://doi.org/10.1007/s00011-019-01273-5
Lauterbach MA, Hanke JE, Serefidou M, Mangan MSJ, Kolbe CC, Hess T, Rothe M, Kaiser R, Hoss F, Gehlen J et al (2019) Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51:997-1011.e7. https://doi.org/10.1016/j.immuni.2019.11.009
Article CAS PubMed Google Scholar
Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415. https://doi.org/10.1016/0306-4522(92)90500-2
Article CAS PubMed Google Scholar
Lee JH, Phelan P, Shin M, Oh BC, Han X, Im SS, Osborne TF (2018) SREBP-1a–stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1. Proc Natl Acad Sci U S A 115:E12228–E12234. https://doi.org/10.1073/pnas.1813458115
Article ADS CAS PubMed PubMed Central Google Scholar
Li L, Zhang X, Yang D, Luo G, Chen S, Le W (2009) Hypoxia increases Aβ generation by altering β- and γ-cleavage of APP. Neurobiol Aging 30:1091–1098. https://doi.org/10.1016/j.neurobiolaging.2007.10.011
Article CAS PubMed Google Scholar
Li F, Wang L, Li JW, Gong M, He L, Feng R, Dai Z, Li SQ (2011) Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4. BMC Neurosci 12. https://doi.org/10.1186/1471-2202-12-111
Article CAS PubMed PubMed Central Google Scholar
Lim Y, Kim S, Kim EK (2021) Palmitate reduces starvation-induced ER stress by inhibiting ER-phagy in hypothalamic cells. Mol Brain 14. https://doi.org/10.1186/s13041-021-00777-8
Article CAS PubMed PubMed Central Google Scholar
Loor G, Schumacker PT (2008) Role of Hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 15:686–690
Article CAS PubMed Google Scholar
Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H, Xu M, Fan Y et al (2020) Activation of PPARA-mediated autophagy reduces Alzheimer Disease-like pathology and cognitive decline in a murine model. Autophagy 16:52–69. https://doi.org/10.1080/15548627.2019.1596488
Article CAS PubMed Google Scholar
Melo HM, da Silva GSS, Sant’Ana MR, Teixeira CVL, Clarke JR, Miya Coreixas VS, de Melo BC, Fortuna JTS, Forny-Germano L, Ledo JH et al (2020) Palmitate is increased in the cerebrospinal fluid of humans with obesity and induces memory impairment in mice via pro-inflammatory TNF-α. Cell Rep 30:2180-2194.e8. https://doi.org/10.1016/j.celrep.2020.01.072
Article CAS PubMed Google Scholar
Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255. https://doi.org/10.1007/s004010000284
Article CAS PubMed Google Scholar
Nicholas SA, Sumbayev VV (2009) The involvement of hypoxia-inducible factor 1 alpha in toll-like receptor 7/8-mediated inflammatory response. Cell Res 19:973–983. https://doi.org/10.1038/cr.2009.44
Article CAS PubMed Google Scholar
Ock J, Cho H-J, Hong S, Kim I, Suk K (2005) Hypoxia as an initiator of neuroinflammation: microglial connections. Curr Neuropharmacol 3:183–191. https://doi.org/10.2174/1570159053586681
Comments (0)