The Role of Macrophages in Atherosclerosis: Participants and Therapists

Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater. 2023;10:rbac103. https://doi.org/10.1093/rb/rbac103

Article  CAS  PubMed  Google Scholar 

Sun X, Lyu L, Zhong X, Ni Z, Xu Q. Application of genetic cell-lineage tracing technology to study cardiovascular diseases. J Mol Cell Cardiol. 2021;156:57–68. https://doi.org/10.1016/j.yjmcc.2021.03.006

Article  CAS  PubMed  Google Scholar 

Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. 2023; https://doi.org/10.1038/s41577-023-00848-y

Tomas L, Prica F, Schulz C. Trafficking of mononuclear phagocytes in healthy arteries and atherosclerosis. Front Immunol. 2021;12:718432. https://doi.org/10.3389/fimmu.2021.718432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L. Contribution of resident and recruited macrophages in vascular physiology and pathology. Curr Opin Hematol. 2018;25(3):196–203. https://doi.org/10.1097/MOH.0000000000000421

Article  CAS  PubMed  Google Scholar 

Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19(9):1166–72. https://doi.org/10.1038/nm.3258

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinberger T, Esfandyari D, Messerer D, et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat Commun. 2020;11(1):4549. https://doi.org/10.1038/s41467-020-18287-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Susser LI, Rayner KJ. Through the layers: how macrophages drive atherosclerosis across the vessel wall. J Clin Invest. 2022;132(9) https://doi.org/10.1172/JCI157011

Tong Y, Cai L, Yang S, et al. The research progress of vascular macrophages and atherosclerosis. Oxidative Med Cell Longev. 2020;2020:7308736. https://doi.org/10.1155/2020/7308736

Article  CAS  Google Scholar 

Wu J, He S, Song Z, et al. Macrophage polarization states in atherosclerosis. Front Immunol. 2023;14:1185587. https://doi.org/10.3389/fimmu.2023.1185587

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Ma CR, Hua YQ, et al. Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci. 2021;276:118957. https://doi.org/10.1016/j.lfs.2020.118957

Article  CAS  PubMed  Google Scholar 

Eshghjoo S, Kim DM, Jayaraman A, Sun Y, Alaniz RC. Macrophage polarization in atherosclerosis. Genes (Basel). 2022;13(5) https://doi.org/10.3390/genes13050756

Lee J, Choi J-H. Deciphering macrophage phenotypes upon lipid uptake and atherosclerosis. Immune Netw. 2020;20(3):e22. https://doi.org/10.4110/in.2020.20.e22

Article  PubMed  PubMed Central  Google Scholar 

Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ Res. 2020;126(6):789–806. https://doi.org/10.1161/CIRCRESAHA.119.312321

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rendra E, Riabov V, Mossel DM, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242–53. https://doi.org/10.1016/j.imbio.2018.11.010

Article  CAS  PubMed  Google Scholar 

Bi C, Fu Y, Li B. Brain-derived neurotrophic factor alleviates diabetes mellitus-accelerated atherosclerosis by promoting M2 polarization of macrophages through repressing the STAT3 pathway. Cell Signal. 2020;70:109569. https://doi.org/10.1016/j.cellsig.2020.109569

Article  CAS  PubMed  Google Scholar 

de-Brito NM, Duncan-Moretti J, da-Costa HC, et al. Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages. Biochim Biophys Acta Mol. Cell Res. 2020;1867(2):118604. https://doi.org/10.1016/j.bbamcr.2019.118604

Article  CAS  Google Scholar 

Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 2017;62:353–64. https://doi.org/10.1007/978-3-319-54090-0_14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Jiang J, Chen W, Li W, Chen Z. Vascular macrophages in atherosclerosis. J Immunol Res. 2019;2019:4354786. https://doi.org/10.1155/2019/4354786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theofilis P, Oikonomou E, Tsioufis K, Tousoulis D. The role of macrophages in atherosclerosis: pathophysiologic mechanisms and treatment considerations. Int J Mol Sci. 2023;24(11) https://doi.org/10.3390/ijms24119568

Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117(1) https://doi.org/10.1160/TH16-08-0593

Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 2010;107(6):737–46. https://doi.org/10.1161/CIRCRESAHA.109.215715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle JJ. Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage. Curr Opin Lipidol. 2012;23(5):453–61. https://doi.org/10.1097/MOL.0b013e328356b145

Article  CAS  PubMed  Google Scholar 

Barrett TJ. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2020;40(1):20–33. https://doi.org/10.1161/ATVBAHA.119.312802

Article  CAS  PubMed  Google Scholar 

Skuratovskaia D, Vulf M, Khaziakhmatova O, et al. Tissue-specific role of macrophages in noninfectious inflammatory disorders. Biomedicines. 2020;8(10) https://doi.org/10.3390/biomedicines8100400

Xie Y, Chen H, Qu P, et al. Novel insight on the role of macrophages in atherosclerosis: focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol. 2022;113(Pt A):109260. https://doi.org/10.1016/j.intimp.2022.109260

Article  CAS  PubMed  Google Scholar 

Jinnouchi H, Guo L, Sakamoto A, et al. Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci. 2020;77(10):1919–32. https://doi.org/10.1007/s00018-019-03371-3

Article  CAS  PubMed  Google Scholar 

Lin P, Ji H-H, Li Y-J, Guo S-D. Macrophage plasticity and atherosclerosis therapy. Front Mol Biosci. 2021;8:679797. https://doi.org/10.3389/fmolb.2021.679797

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi JR, Zhao DR, Zhao L, Luo F, Yang M. MiR-520a-3p inhibited macrophage polarization and promoted the development of atherosclerosis via targeting UVRAG in apolipoprotein E knockout mice. Front Mol Biosci. 2020;7:621324. https://doi.org/10.3389/fmolb.2020.621324

Article  CAS  PubMed  Google Scholar 

Ouimet M, Ediriweera HN, Gundra UM, et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 2015;125(12):4334–48. https://doi.org/10.1172/JCI81676

Article  PubMed  PubMed Central  Google Scholar 

Guo Q, Zhu X, Wei R, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1. J Cell Physiol. 2021;236(3):2008–22. https://doi.org/10.1002/jcp.29987

Article  CAS  PubMed  Google Scholar 

Zhao X, Di Q, Liu H, et al. MEF2C promotes M1 macrophage polarization and Th1 responses. Cell Mol Immunol. 2022;19(4):540–53. https://doi.org/10.1038/s41423-022-00841-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng M, Cao Y, Zhang Y, et al. HnRNPA2B1 aggravates inflammation by promoting M1 macrophage polarization. Nutrients. 2023;15(7) https://doi.org/10.3390/nu15071555

Li J, Yang S, Han Z, et al. Akt2 inhibitor promotes M2 macrophage polarization in rats with periapical inflammation by reducing miR-155-5p expression. Nan Fang Yi Ke Da Xue Xue Bao. 2023;43(4):568–76. https://doi.org/10.12122/j.issn.1673-4254.2023.04.09

Article  CAS  PubMed  Google Scholar 

Bai L, Li Z, Li Q, et al. Mediator 1 is atherosclerosis protective by regulating macrophage polarization. Arterioscler Thromb Vasc Biol. 2017;37(8):1470–81. https://doi.org/10.1161/ATVBAHA.117.309672

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song F, Li J-Z, Wu Y, et al. Ubiquitinated ligation protein NEDD4L participates in MiR-30a-5p attenuated atherosclerosis by regulating macrophage polarization and lipid metabolism. Mol Ther Nucleic Acids. 2021;26:1303–17. https://doi.org/10.1016/j.omtn.2021.10.030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin E-S, Hsu Y-A, Chang C-Y, et al. Ablation of galectin-12 inhibits atherosclerosis through enhancement of M2 macrophage polarization. Int J Mol Sci. 2020;21(15) https://doi.org/10.3390/ijms21155511

Nagenborg J, Goossens P, Biessen EAL, Donners MMPC. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: implications for treatment. Eur J Pharmacol. 2017;816:14–24. https://doi.org/10.1016/j.ejphar.2017.10.005

Article  CAS  PubMed  Google Scholar 

Park S-J, Lee K-P, Kang S, et al. Sphingosine 1-ph

留言 (0)

沒有登入
gif