An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2+/PTBP1+ pan-adenocarcinoma

Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics–developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

Article  CAS  PubMed  Google Scholar 

Pilkington, E. H. et al. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 131, 16–40 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kübler, H. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer. 3, 26 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 136, 731–745 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y. & Wang, Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J. Mol. Cell. Biol. 11, 911–919 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325 (1988).

Article  CAS  PubMed  Google Scholar 

de Breyne, S., Yu, Y., Unbehaun, A., Pestova, T. V. & Hellen, C. U. Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc. Natl Acad. Sci. USA 106, 9197–9202 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Henis-Korenblit, S. et al. The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc. Natl Acad. Sci. USA 99, 5400–5405 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther. 28, 285–296 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Hoecke, L. et al. Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat. Commun. 9, 3417 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

Article  CAS  PubMed  Google Scholar 

Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

Article  CAS  PubMed  Google Scholar 

Heilig, R. et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48, 584–592 (2018).

Article  CAS  PubMed  Google Scholar 

Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

Article  CAS  PubMed  Google Scholar 

Andreev, D. E. et al. Differential contribution of the m7G-cap to the 5’ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Res. 37, 6135–6147 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Matsumoto, K., Kusaka, J., Nishibori, A. & Hara, H. Lipid domains in bacterial membranes. Mol. Microbiol. 61, 1110–1117 (2006).

Article  CAS  PubMed  Google Scholar 

Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

Article  PubMed  Google Scholar 

Aits, S. et al. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy. 11, 1408–1424 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews, N. W., Almeida, P. E. & Corrotte, M. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol. 24, 734–742 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ketel, K. et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature 529, 408–412 (2016).

Article  CAS  PubMed  Google Scholar 

Tatsuta, T., Scharwey, M. & Langer, T. Mitochondrial lipid trafficking. Trends Cell Biol. 24, 44–52 (2014).

Article  CAS  PubMed  Google Scholar 

Wasilenko, S. T., Stewart, T. L., Meyers, A. F. & Barry, M. Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc. Natl Acad. Sci. USA 100, 14345–14350 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weindel, C. G. et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell. 185, 3214–3231 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garland, K. M., Sheehy, T. L. & Wilson, J. T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev. 122, 5977–6039 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

Article  CAS  PubMed  Google Scholar 

Kunová, N. et al. Mitochondrial processing peptidases-structure, function and the role in human diseases. Int. J. Mol. Sci. 23, 1297 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Taylor, A. B. et al. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure. 9, 615–625 (2001).

Article  CAS  PubMed  Google Scholar 

Kuang, S. et al. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc. Natl Acad. Sci. USA. 114, 10642–10647 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson, B. R. et al. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 39, 9329–9338 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

Article  CAS  PubMed  Google Scholar 

Petkovic, S. & Müller, S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43, 2454–2465 (2015).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif