Effects of autologous serum on TREM2 and APOE in a personalized monocyte-derived macrophage assay of late-onset Alzheimer’s patients

Prince M. World Alzheimer Report 2015: The Global Impact of Dementia | Alzheimer’s Disease International. World Alzheimer’s Report. 2015.

Sheppard O., & Coleman M. Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis. Alzheimer’s Disease: Drug Discovery. 2020:1–22. https://doi.org/10.36255/EXONPUBLICATIONS.ALZHEIMERSDISEASE.2020.CH1.

Talwar P., Sinha J., Grover S., Rawat C., Kushwaha S., Agarwal R., Taneja V., & Kukreti R. Dissecting Complex and Multifactorial Nature of Alzheimer’s Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Molecular Neurobiology 2015 ;53(7): 4833–4864. https://doi.org/10.1007/S12035-015-9390-0.

Heneka M. T., O’Banion M. K., Terwel D., & Kummer M. P. Neuroinflammatory processes in Alzheimer’s disease. J Neural Trans 2010;117(8):117(8):919–947. https://doi.org/10.1007/S00702-010-0438-Z.

Regen F., Hellmann-Regen J., Costantini E., & Reale M. Neuroinflammation and Alzheimer’s Disease: Implications for Microglial Activation. Current Alzheimer Research. 2017;14(11). https://doi.org/10.2174/1567205014666170203141717.

Licastro F, Candore G, Lio D, Porcellini E, Colonna-Romano G, Franceschi C, Caruso C. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005;2:8. https://doi.org/10.1186/1742-4933-2-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaw A. C., Goldstein D. R., & Montgomery R. R. Age-dependent dysregulation of innate immunity. Nature Publishing Group. 2013;13. https://doi.org/10.1038/nri3547.

Xia X., Jiang Q., McDermott J., & Han J. D. J. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell. 2018;17(5). https://doi.org/10.1111/ACEL.12802.

Muñoz-Castro C, Mejias-Ortega M, Sanchez-Mejias E, Navarro V, Trujillo-Estrada L, Jimenez S, Garcia-Leon JA, Fernandez-Valenzuela JJ, Sanchez-Mico MV, Romero-Molina C, Moreno-Gonzalez I, Baglietto-Vargas D, Vizuete M, Gutierrez A, Vitorica J. Monocyte-derived cells invade brain parenchyma and amyloid plaques in human Alzheimer’s disease hippocampus. Acta Neuropathol Commun. 2023;11(1):1–21. https://doi.org/10.1186/S40478-023-01530-Z/FIGURES/6.

Article  Google Scholar 

Nevalainen T, Autio A, Hurme M. Composition of the infiltrating immune cells in the brain of healthy individuals: effect of aging. Immunity and Ageing. 2022;19(1):1–8. https://doi.org/10.1186/S12979-022-00302-Y/TABLES/2.

Article  Google Scholar 

Silvin A., Uderhardt S., Piot C., Da Mesquita S., Yang K., Geirsdottir L., Mulder K., Eyal D., Liu Z., Bridlance C., Thion M. S., Zhang X. M., Kong W. T., Deloger M., Fontes V., Weiner A., Ee R., Dress R., Hang J. W., … Ginhoux F. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity. 2022;55(8):1448–1465.e6. https://doi.org/10.1016/J.IMMUNI.2022.07.004.

Yan P., KimK. W., Xiao Q., Ma X., Czerniewski L. R., Liu H., Rawnsley D. R., Yan Y., RandolphG. J., Epelman S., Lee J. M., & Diwan A. Peripheral monocyte-derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer’s disease.  J Clin Invest. 2022;132(11). https://doi.org/10.1172/JCI152565.

Ju H, Woo Park K, Kim I, Cave JW, Cho S. Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia. J Neuroinflammation. 2022;19:190. https://doi.org/10.1186/s12974-022-02552-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansen I. E., Savage J. E., Watanabe K., Bryois J., Williams D. M., Steinberg S., Sealock J., Karlsson I. K., Hägg S., Athanasiu L., Voyle N., Proitsi P., Witoelar A., Stringer S., Aarsland D., Almdahl I. S., Andersen F., Bergh S., Bettella F., … Posthuma D. (2019). Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet, 51(3), 404–413. https://doi.org/10.1038/S41588-018-0311-9.

Wightman D. P., Jansen I. E., Savage J. E., Shadrin A. A., Bahrami S., Holland D., Rongve A., Børte S., Winsvold B. S., Drange O. K., Martinsen A. E., Skogholt A. H., Willer C., Bråthen G., Bosnes I., Nielsen J. B., Fritsche L. G., Thomas L. F., Pedersen L. M., … Posthuma D. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53(9):1276–1282. https://doi.org/10.1038/s41588-021-00921-z.

Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18. https://doi.org/10.1038/nrneurol.2012.263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, Li X, Rademakers R, Kang SS, Xu H, Younkin S, Das P, Fryer JD, Bu G. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J Biol Chem. 2015;290(43):26043–50. https://doi.org/10.1074/JBC.M115.679043.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Y., & Holtzman D. M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nature Reviews Immunology 2018;18(12):759–772. https://doi.org/10.1038/s41577-018-0051-1.

Wolfe C. M., Fitz N. F., Nam K. N., Lefterov I., & Koldamova R. The Role of APOE and TREM2 in Alzheimer′s Disease—Current Understanding and Perspectives. Int J Mole Sci.  2019; 20(1). https://doi.org/10.3390/IJMS20010081.

Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I. A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell. 2017;169(7):1276–1290.e17. https://doi.org/10.1016/J.CELL.2017.05.018.

Article  CAS  PubMed  Google Scholar 

Lee CYD, Daggett A, Gu X, Jiang LL, Langfelder P, Li X, Wang N, Zhao Y, Park CS, Cooper Y, Ferando I, Mody I, Coppola G, Xu H, Yang XW. Elevated trem2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron. 2018;97(5):1032–1048.e5. https://doi.org/10.1016/J.NEURON.2018.02.002/ATTACHMENT/5A43D1CE-64DB-4F88-AFE0-BB6D02D1553B/MMC8.XLSX.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, Öhrfelt A, Blennow K, Hardy J, Schott J, Mills K, Zetterberg H. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener. 2016;11(1):1–7. https://doi.org/10.1186/S13024-016-0071-X/TABLES/1.

Article  Google Scholar 

Suárez‐Calvet M., Kleinberger G., Araque Caballero M. Á., Brendel M., Rominger A., Alcolea D., Fortea J., Lleó A., Blesa R., Gispert J. D., Sánchez‐Valle R., Antonell A., Rami L., Molinuevo J. L., Brosseron F., Traschütz A., Heneka M. T., Struyfs H., Engelborghs S., … Haass C. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mole Med. 2016; 8(5):466–476. https://doi.org/10.15252/EMMM.201506123.

Cosma N. C., Eren N., Üsekes B., Gerike S., Heuser I., Peters O., & Hellmann-Regen J. Acute and Chronic Macrophage Differentiation Modulates TREM2 in a Personalized Alzheimer’s Patient-Derived Assay. Cell Mole Neurobiol. 2023:1–14. https://doi.org/10.1007/S10571-023-01351-7/FIGURES/4.

Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649–65. https://doi.org/10.1111/BPH.13139.

Article  CAS  PubMed  Google Scholar 

Seno H, Miyoshi H, Brown SL, Geske MJ, Colonna M, Stappenbeck TS. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci USA. 2009;106(1):256–61. https://doi.org/10.1073/PNAS.0803343106/SUPPL_FILE/0803343106SI.PDF.

Article  CAS  PubMed  Google Scholar 

Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M. Impaired Differentiation of Osteoclasts in TREM-2–deficient Individuals. J Exp Med. 2003;198(4):645–51. https://doi.org/10.1084/JEM.20022220.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molgora M., Esaulova E., Vermi W., Hou J., Chen Y., Luo J., Brioschi S., Bugatti M., Omodei A. S., Ricci B., Fronick C., Panda S. K., Takeuchi Y., Gubin M. M., Faccio R., Cella M., Gilfillan S., Unanue E. R., Artyomov M. N., … Colonna M. TREM2 Modulation Remodels the Tumor Myeloid Landscape, Enhancing Anti-PD-1 Immunotherapy. Cell. 2020;182(4):886. https://doi.org/10.1016/J.CELL.2020.07.013.

Turnbull I. R., Gilfillan S., Cella M., Aoshi T., Miller M., Piccio L., Hernandez M., & Colonna  M. Cutting edge: TREM-2 attenuates macrophage activation. Journal of Immunology (Baltimore, Md. : 1950). 2006;177(6):3520–3524. https://doi.org/10.4049/JIMMUNOL.177.6.3520.

Baitsch D, Bock HH, Engel T, Telgmann R, Müller-Tidow C, Varga G, Bot M, Herz J, Robenek H, Von Eckardstein A, Nofer JR. Apolipoprotein E induces antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol. 2011;31(5):1160–8. https://doi.org/10.1161/ATVBAHA.111.222745.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cosma NC, Üsekes B, Otto LR, Gerike S, Heuser I, Regen F, Hellmann-Regen J. M1/M2 polarization in major depressive disorder: Disentangling state from trait effects in an individualized cell-culture-based approach. Brain Behav Immun. 2021;94:185–95. https://doi.org/10.1016/j.bbi.2021.02.009.

Article  CAS  PubMed  Google Scholar 

Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75. https://doi.org/10.1111/J.1474-9726.2012.00851.X.

Article  CAS  PubMed  Google Scholar 

Kovacs EJ, Palmer JL, Fortin CF, Fülöp T, Goldstein DR, Linton PJ. Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol. 2009;30(7):319–24. https://doi.org/10.1016/J.IT.2009.03.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abu-Taha M, Rius C, Hermenegildo C, Noguera I, Cerda-Nicolas J-M, Issekutz AC, Jose PJ, Cortijo J, Morcillo EJ, Sanz M-J. Menopause and ovariectomy cause a low grade of systemic inflammation that may be prevented by chronic treatment with low doses of estrogen or losartan. J Immunol. 2009;183(2):1393–402. https://doi.org/10.4049/JIMMUNOL.0803157.

Article  CAS  PubMed  Google Scholar 

Starr ME, Saito M, Evers BM, Saito H. Age-Associated Increase in Cytokine Production During Systemic Inflammation—II: The Role of IL-1β in Age-Dependent IL-6 Upregulation in Adipose Tissue. J Gerontol A Biol Sci Med Sci. 2015;70(12):1508. https://doi.org/10.1093/GERONA/GLU197.

Article  CAS  PubMed  Google Scholar 

Trzonkowski P, Myśliwska J, Szmit E, Wiȩckiewicz J, Łukaszuk K, Brydak LB, Machała M, Myśliwski A. Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination – An impact of immunosenescence. Vaccine. 2003;21(25–26):3826–36. https://doi.org/10.1016/S0264-410X(03)00309-8.

Article  CAS  PubMed  Google Scholar 

Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117:15–22. https://doi.org/10.1016/J.CYTO.2019.01.013.

Article  CAS  PubMed  Google Scholar 

Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, Ferri C, Casadei V, Grimaldi LME. Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J Neuroimmunol. 2000;103(1):97–102. https://doi.org/10.1016/S0165-5728(99)00226-X.

Article  CAS  PubMed  Google Scholar 

Ng A., Tam W. W., Zhang M. W., Ho C. S., Husain S. F., McIntyre R. S., & Ho R. C. (2018). IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis. Sci Rep 2018;8(1):1–12. https://doi.org/10.1038/s41598-018-30487-6.

Munawara U., Catanzaro M., Xu W., Tan C., Hirokawa K., Bosco N., Dumoulin D., Khalil A., Larbi A., Lévesque S., Ramassamy C., Barron A. E., Cunnane S., Beauregard P. B., Bellenger J. P., Rodrigues S., Desroches M., Witkowski J. M., Laurent B., … Fulop T. Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer’s disease. Immun Ageing. 2021;18(1):1–25. https://doi.org/10.1186/S12979-021-00236-X.

Barron AM, Pike CJ. Sex hormones, aging, and Alzheimer’s disease. Front Biosci (Elite Ed). 2012;4(3):976. https://doi.org/10.2741/E434.

Article  PubMed  Google Scholar 

Dodiya HB, Kuntz T, Shaik SM, Baufeld C, Leibowitz J, Zhang X, Gottel N, Zhang X, Butovsky O, Gilbert JA, Sisodia SS. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J Exp Med. 2019;216(7):1542–60. https://doi.org/10.1084/JEM.20182386.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jirillo E, Rink L, Fransen F, Van Beek AA, Borghuis T, Meijer B, Van Der Gaast-De Jongh C, Savelkoul HF, De Jonge MI, Faas MM, Boekschoten MV, Smidt H, Aidy SE, De Vos P. The impact of gut Microbiota on gender-specific Differences in immunity. 2017;8:30. https://doi.org/10.3389/fimmu.2017.00754.

Article  CAS 

留言 (0)

沒有登入
gif