Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27:529–47.
Article PubMed PubMed Central CAS Google Scholar
Verdin E. NAD(+) in aging, metabolism, and neurodegeneration. Science. 2015;350:1208–13.
Article PubMed CAS Google Scholar
Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity. Ageing Res Rev. 2018;47:1–17.
Article PubMed CAS Google Scholar
Chini CCS, Zeidler JD, Kashyap S, Warner G, Chini EN. Evolving concepts in NAD(+) metabolism. Cell Metab. 2021;33:1076–87.
Article PubMed PubMed Central CAS Google Scholar
Schultz MB, Sinclair DA. Why NAD(+) declines during aging: it’s destroyed. Cell Metab. 2016;23:965–6.
Article PubMed PubMed Central CAS Google Scholar
Koehn CJ, Elvehjem CA. Further studies on the concentration of the antipellagra factor. J Biol Chem. 1937;118:693–9.
Abdellatif M, Sedej S, Kroemer G. NAD(+) metabolism in cardiac health, aging, and disease. Circulation. 2021a;144:1795–817.
Article PubMed CAS Google Scholar
Bertoldo MJ, Listijono DR, Ho WJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, et al. NAD(+) repletion rescues female fertility during reproductive aging. Cell Rep. 2020;30:1670-1681 e1677.
Article PubMed PubMed Central CAS Google Scholar
Hikosaka K, Yaku K, Okabe K, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci. 2021;24:371–83.
Article PubMed CAS Google Scholar
Romani M, Sorrentino V, Oh CM, Li H, de Lima TI, Zhang H, Shong M, Auwerx J. NAD(+) boosting reduces age-associated amyloidosis and restores mitochondrial homeostasis in muscle. Cell Rep. 2021;34:108660.
Article PubMed PubMed Central CAS Google Scholar
Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: a benefit/risk analysis. Exp Gerontol. 2020;132:110831.
Article PubMed CAS Google Scholar
Hou Y, Wei Y, Lautrup S, Yang B, Wang Y, Cordonnier S, Mattson MP, Croteau DL, Bohr VA. NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc Natl Acad Sci U S A. 2021;118:e2011226118.
Article PubMed PubMed Central CAS Google Scholar
Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, Chonchol M, Seals DR. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9:1286.
Article PubMed PubMed Central Google Scholar
ASRM. Testing and interpreting measures of ovarian reserve: a committee opinion. Fertil Steril. 2020;114:1151–7.
McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.
Tal R, Seifer DB. Ovarian reserve testing: a user’s guide. Am J Obstet Gynecol. 2017;217:129–40.
Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23:699–708.
Demko ZP, Simon AL, McCoy RC, Petrov DA, Rabinowitz M. Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening. Fertil Steril. 2016;105:1307–13.
Article PubMed CAS Google Scholar
Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101:656-663 e651.
Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, Hurd WW, Singh KK. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 2020;63:101168.
Article PubMed PubMed Central CAS Google Scholar
Liu Y, Gao J. Reproductive aging: biological pathways and potential interventive strategies. J Genet Genomics. 2023;50:141–50.
Tamura H, Kawamoto M, Sato S, Tamura I, Maekawa R, Taketani T, Aasada H, Takaki E, Nakai A, Reiter RJ, et al. Long-term melatonin treatment delays ovarian aging. J Pineal Res. 2017;62:e12381.
He C, Wang J, Zhang Z, Yang M, Li Y, Tian X, Ma T, Tao J, Zhu K, Song Y, et al. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int J Mol Sci. 2016;17:939.
Article PubMed PubMed Central Google Scholar
Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, Tamura I, Maekawa R, Sato S, Taketani T, et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci. 2020;21:1135.
Article PubMed PubMed Central CAS Google Scholar
Zhang H, Li C, Wen D, Li R, Lu S, Xu R, Tang Y, Sun Y, Zhao X, Pan M, et al. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply. Redox Biol. 2022;49:102215.
Article PubMed CAS Google Scholar
Zheng B, Meng J, Zhu Y, Ding M, Zhang Y, Zhou J. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS. J Ovarian Res. 2021;14:152.
Article PubMed PubMed Central CAS Google Scholar
Budani MC, Tiboni GM. Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants (Basel). 2020;9:612.
Article PubMed CAS Google Scholar
Darabi Z, Basir Z, Tabandeh MR, Ghotbeddin Z. Coenzyme Q10 improves ovarian histology and attenuates the expression of angiogenesis-associated proteins in the ovary of rats with experimental hyperstimulation syndrome. Iran J Basic Med Sci. 2022;25:989–96.
PubMed PubMed Central Google Scholar
Ozcan P, Ficicioglu C, Kizilkale O, Yesiladali M, Tok OE, Ozkan F, Esrefoglu M. Can Coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage? J Assist Reprod Genet. 2016;33:1223–30.
Article PubMed PubMed Central Google Scholar
Xu Y, Nisenblat V, Lu C, Li R, Qiao J, Zhen X, Wang S. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod Biol Endocrinol. 2018;16:29.
Article PubMed PubMed Central Google Scholar
Liao K, Wang Y, Zheng L, Lu D, Wu J, Wu B, Wu Z, Jiang Z. Effect of folic acid supplementation on diminished ovarian reserve: study protocol of a single-centre, open-label, randomised, placebo-controlled clinical trial. BMJ Open. 2022;12:e057689.
Article PubMed PubMed Central Google Scholar
Ozatik FY, Ozatik O, Yigitaslan S, Kaygisiz B, Erol K. Do Resveratrol and dehydroepiandrosterone increase diminished ovarian reserve? Eurasian J Med. 2020;52:6–11.
Article PubMed PubMed Central CAS Google Scholar
Pasquariello R, Verdile N, Brevini TAL, Gandolfi F, Boiti C, Zerani M, Maranesi M. The role of resveratrol in mammalian reproduction. Molecules. 2020;25:4554.
Article PubMed PubMed Central CAS Google Scholar
Barim-Oz O, Sahin H. The influence of dietary antioxidant on ovarian eggs and levels of vitamin E, C, A, astaxanthin, beta-carotene and oxidative stres in tissues of Astacus leptodactylus (Eschscholtz) during reproduction. Cell Mol Biol (Noisy-le-grand). 2016;62:1–10.
Article PubMed CAS Google Scholar
Gai HF, An JX, Qian XY, Wei YJ, Williams JP, Gao GL. Ovarian damages produced by aerosolized fine particulate matter (PM(2.5)) pollution in mice: possible protective medications and mechanisms. Chin Med J (Engl). 2017;130:1400–10.
Article PubMed CAS Google Scholar
Hart RJ. Use of growth hormone in the IVF treatment of women with poor ovarian reserve. Front Endocrinol (Lausanne). 2019;10:500.
Comments (0)