Role of the interstitium during septic shock: a key to the understanding of fluid dynamics?

Benias PC, Wells RG, Sackey-Aboagye B, Klavan H, Reidy J, Buonocore D, et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci Rep. 2018;8:395.

Google Scholar 

Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73:1–78.

Article  CAS  PubMed  Google Scholar 

Angus DC, van der Poll T. Severe sepsis and septic shock. New Engl J Med. 2013;369(840):851.

Google Scholar 

Marx G, Meyer MC, Schuerholz T, Vangerow B, Gratz K, Hecker H, et al. Hydroxyethyl starch and modified fluid gelatin maintain plasma volume in a porcine model of septic shock with capillary leakage. Intens Care Med. 2002;28(629):635.

Google Scholar 

Cordemans C, Laet ID, Regenmortel NV, Schoonheydt K, Dits H, Huber W, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl 1):S1.

Article  PubMed  PubMed Central  Google Scholar 

Tigabu BM, Davari M, Kebriaeezadeh A, Mojtahedzadeh M. Fluid volume, fluid balance and patient outcome in severe sepsis and septic shock: a systematic review. J Crit Care. 2018;48:153–9.

Article  PubMed  Google Scholar 

Besen BAMP, Taniguchi LU. Negative fluid balance in sepsis: when and how? Shock. 2017;47:35–40.

Article  CAS  PubMed  Google Scholar 

Reed RK, Rubin K. Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res. 2010;87:211–7.

Article  CAS  PubMed  Google Scholar 

Cenaj O, Allison DHR, Imam R, Zeck B, Drohan LM, Chiriboga L, et al. Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Commun Biol. 2021;4:436.

Article  PubMed  PubMed Central  Google Scholar 

Wiig H, Rubin K, Reed RK. New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesth Scand. 2003;47(111):121.

Google Scholar 

Ushiki T. Collagen fibers, reticular fibers and elastic fibers: a comprehensive understanding from a morphological viewpoint. Arch Histol Cytol. 2002;65:109–26.

Article  PubMed  Google Scholar 

Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Resp Crit Care. 2020;202:361–70.

Article  CAS  Google Scholar 

London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, et al. Targeting Robo4-dependent slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010;2:23ra19.

Article  PubMed  PubMed Central  Google Scholar 

Lee WL, Slutsky AS. Sepsis and endothelial permeability. New Engl J Med. 2010;363:689–91.

Article  CAS  PubMed  Google Scholar 

Goligorsky MS, Sun D. Glycocalyx in endotoxemia and sepsis. Am J Pathol. 2020;190:791–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abe K, Tanaka J, Mishima K, Iijima T. Exploring the mechanism of hyperpermeability following glycocalyx degradation: beyond the glycocalyx as a structural barrier. PLoS ONE. 2021;16:e0252416.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurbel S, Kurbel B, Belovari T, Maric S, Steiner R, Bozic D. Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport. Med Hypotheses. 2001;57:161–6.

Article  CAS  PubMed  Google Scholar 

Guyton AC, Taylor AE, Brace RA. A synthesis of interstitial fluid regulation and lymph formation. Fed Proc. 1976;35:1881–5.

CAS  PubMed  Google Scholar 

Starling EH. Physiological factors involved in the causation of dropsy. Lancet. 1896;147(1267):1270.

Google Scholar 

Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(198):210.

Google Scholar 

Curry FE, Michel CC. A fiber matrix model of capillary permeability. Microvasc Res. 1980;20:96–9.

Article  CAS  PubMed  Google Scholar 

Bates DO, Levick JR, Mortimer PS. Starling pressures in the human arm and their alteration in postmastectomy oedema. J Physiology. 1994;477:355–63.

Article  CAS  Google Scholar 

Levick JR. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol. 1991;76(825):857.

Google Scholar 

Guyton AC. Interstitial fluid pressure: pressure-volume curves of interstitial space. Circ Res. 1965;16(452):460.

Google Scholar 

Wiig H, Lund T. Relationship between interstitial fluid volume and pressure (compliance) in hypothyroid rats. Am J Physiol-Hear Circ Physiol. 2001;281:H1085–92.

Article  CAS  Google Scholar 

Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49:e1063–143.

Article  PubMed  Google Scholar 

Stranden E, Myhre HO. Pressure–volume recordings of human subcutaneous tissue: a study in patients with edema following arterial reconstruction for lower limb atherosclerosis. Microvasc Res. 1982;24(241):248.

Google Scholar 

Kolb L, Remmelink M, Salmon I, Vincent J-L. Organ edema in patients with severe sepsis. Crit Care Med. 2012;40(1):328.

Google Scholar 

Kelm DJ, Perrin JT, Cartin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock. 2015;43:68–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117(1749):1754.

Google Scholar 

Dhondup T, Tien J-CC, Marquez A, Kennedy CC, Gajic O, Kashani KB. Association of negative fluid balance during the de-escalation phase of sepsis management with mortality: a cohort study. J Crit Care. 2020;55:16–21.

Article  PubMed  Google Scholar 

Silver IA. Local factors in tissue oxygenation. J Clin Pathol. 1977;s3-11:7.

Article  Google Scholar 

Pias SC. Oxygen transport to tissue XLI. Adv Exp Med Biol. 2020;1232:183–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mallat J, Rahman N, Hamed F, Hernandez G, Fischer M-O. Pathophysiology, mechanisms, and managements of tissue hypoxia. Anaesth Crit Care Pa. 2022;41:101087.

Google Scholar 

Roch A, Guervilly C, Papazian L. Fluid management in acute lung injury and ards. Ann Intensive Care. 2011;1:16.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Abdel-Razek O, Liu Z, Hu F, Zhou Q, Cooney RN, et al. Role of surfactant proteins A and D in sepsis-induced acute kidney injury. Shock. 2015;43:31–8.

Article  PubMed  PubMed Central  Google Scholar 

Malbrain MLNG, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46:361–80.

Article  PubMed  Google Scholar 

Meyhoff TS, Møller MH, Hjortrup PB, Cronhjort M, Perner A, Wetterslev J. Lower vs higher fluid volumes during initial management of sepsis a systematic review with meta-analysis and trial sequential analysis. Chest. 2020;157:1478–96.

Article  PubMed  Google Scholar 

Meyhoff TS, Hjortrup PB, Wetterslev J, Sivapalan P, Laake JH, Cronhjort M, et al. Restriction of intravenous fluid in ICU patients with septic shock. New Engl J Med. 2022;386:2459–70.

Article  CAS  PubMed  Google Scholar 

National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Clinical Trials Network, Shapiro NI, Douglas IS, Brower RG, Brown SM, Exline MC, et al. Early restrictive or liberal fluid management for sepsis-induced hypotension. New Engl J Med. 2023;388:499–510.

Article  Google Scholar 

Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality*. Crit Care Med. 2011;39(259):265.

Google Scholar 

Margarson MP, Soni NC. Effects of albumin supplementation on microvascular permeability in septic patients. J Appl Physiol. 2002;92(2139):2145.

Google Scholar 

Yu M, Pei K, Moran S, Edwards KD, Domingo S, Steinemann S, et al. A prospective randomized trial using blood volume analysis in addition to pulmonary artery catheter, compared with pulmonary artery catheter alone, to guide shock resuscitation in critically ill surgical patients. Shock. 2011;35:220–8.

Article  PubMed  Google Scholar 

Hahn RG, Dull RO. Interstitial washdown and vascular albumin refill during fluid infusion: novel kinetic analysis from three clinical trials. Intensive Care Med Exp. 2021;9:44.

Article 

Comments (0)

No login
gif