Molecular characterization of Clostridium perfringens isolates from a tertiary children’s hospital in Guangzhou, China, establishing an association between bacterial colonization and food allergies in infants

Zhou B, Yuan Y, Zhang S, Guo C, Li X, Li G, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front Immunol. 2020;11:575.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee MJ, Park YM, Kim B, Tae IH, Kim NE, Pranata M, et al. Disordered development of gut microbiome interferes with the establishment of the gut ecosystem during early childhood with atopic dermatitis. Gut Microbes. 2022;14:2068366.

Article  PubMed  PubMed Central  Google Scholar 

Boutin RCT, Sbihi H, McLaughlin RJ, Hahn AS, Konwar KM, Loo RS, et al. Composition and associations of the infant gut fungal microbiota with environmental factors and childhood allergic outcomes. mBio. 2021;12:e0339620.

Article  PubMed  Google Scholar 

Aziz M, Prince JM, Wang P. Gut microbiome and necrotizing enterocolitis: understanding the connection to find a cure. Cell Host Microbe. 2022;30:612–6.

Article  CAS  PubMed  Google Scholar 

Al Radaideh AJ, Badran EF, Shehabi AA. Diversity of toxin genotypes and antimicrobial susceptibility of Clostridium perfringens isolates from feces of infants. Germs. 2019;9:28–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tonooka T, Sakata S, Kitahara M, Hanai M, Ishizeki S, Takada M, et al. Detection and quantification of four species of the genus Clostridium in infant feces. Microbiol Immunol. 2005;49:987–92.

Article  CAS  PubMed  Google Scholar 

Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, et al. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants. Benef Microbes. 2017;8:353–65.

Article  CAS  PubMed  Google Scholar 

Fallani M, Rigottier-Gois L, Aguilera M, Bridonneau C, Collignon A, Edwards CA, et al. Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rRNA targeted probes. J Microbiol Methods. 2006;67:150–61.

Article  CAS  PubMed  Google Scholar 

Dittmar E, Beyer P, Fischer D, Schäfer V, Schoepe H, Bauer K, et al. Necrotizing enterocolitis of the neonate with Clostridium perfringens: diagnosis, clinical course, and role of alpha toxin. Eur J Pediatr. 2008;167:891–5.

Article  PubMed  Google Scholar 

Ma Z, Chen L, Xian R, Fang H, Wang J, Hu Y. Time trends of childhood food allergy in China: three cross-sectional surveys in 1999, 2009, and 2019. Pediatr Allergy Immunol. 2021;32:1073–9.

Article  PubMed  Google Scholar 

Yang M, Tan M, Wu J, Chen Z, Long X, Zeng Y, et al. Prevalence, characteristics, and outcome of cow’s milk protein allergy in chinese infants: a population-based survey. JPEN J Parenter Enteral Nutr. 2019;43:803–8.

Article  PubMed  Google Scholar 

Nakano V, Ignacio A, Llanco L, Bueris V, Sircili MP, Avila-Campos MJ. Multilocus sequence typing analyses of Clostridium perfringens type a strains harboring tpeL and netB genes. Anaerobe. 2017;44:99–105.

Article  CAS  PubMed  Google Scholar 

Shaw AG, Cornwell E, Sim K, Thrower H, Scott H, Brown JCS, et al. Dynamics of toxigenic Clostridium perfringens colonisation in a cohort of prematurely born neonatal infants. BMC Pediatr. 2020;20:75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parish WE. Evaluation of in vitro predictive tests for irritation and allergic sensitization. Food Chem Toxicol. 1986;24:481–94.

Article  CAS  PubMed  Google Scholar 

Gaboriau-Routhiau V, Moreau MC. Oral tolerance to ovalbumin in mice: induction and long-term persistence unaffected by Staphylococcus aureus enterotoxin B and Clostridium perfringens type a enterotoxin. Pediatr Res. 1997;42:503–8.

Article  CAS  PubMed  Google Scholar 

Morris WE, Fernández-Miyakawa ME. Toxins of Clostridium perfringens. Rev Argent Microbiol. 2009;41:251–60.

CAS  PubMed  Google Scholar 

Azimirad M, Gholami F, Yadegar A, Knight DR, Shamloei S, Aghdaei HA, et al. Prevalence and characterization of Clostridium perfringens toxinotypes among patients with antibiotic-associated diarrhea in Iran. Sci Rep. 2019;9:7792.

Article  PubMed  PubMed Central  Google Scholar 

Vaishnavi C, Kaur S. Clostridium perfringens enterotoxin in antibiotic-associated diarrhea. Indian J Pathol Microbiol. 2008;51:198–9.

Article  PubMed  Google Scholar 

Woo PC, Lau SK, Chan KM, Fung AM, Tang BS, Yuen KY. Clostridium bacteraemia characterised by 16S ribosomal RNA gene sequencing. J Clin Pathol. 2005;58:301–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gohari IM, Navarro MA, Li J, Shrestha A, Uzal F, McClane BA. Pathogenicity and virulence of Clostridium perfringens. Virulence. 2021;12:723–53.

Article  Google Scholar 

Li Z, Yan C, Gong X, Wang J. Severe intravascular hemolysis from Clostridium perfringens septicemia in a neonate with necrotizing enterocolitis in China: a case report. Infect Drug Resist. 2022;15:1461–5.

Article  PubMed  PubMed Central  Google Scholar 

Vernacchio L, Vezina RM, Mitchell AA, Lesko SM, Plaut AG, Acheson DW. Diarrhea in american infants and young children in the community setting: incidence, clinical presentation and microbiology. Pediatr Infect Dis J. 2006;25:2–7.

Article  PubMed  Google Scholar 

Sung K, Kim JY, Lee YJ, Hwang EH, Park JH. High incidence of staphylococcus aureus and norovirus gastroenteritis in infancy: a single-center, 1-year experience. Pediatr Gastroenterol Hepatol Nutr. 2014;17:140–6.

Article  PubMed  PubMed Central  Google Scholar 

Mitchell LA, Koval M. Specificity of interaction between Clostridium perfringens enterotoxin and claudin-family tight junction proteins. Toxins (Basel). 2010;2:1595–611.

Article  CAS  PubMed  Google Scholar 

Daneshmand A, Kermanshahi H, Mohammed J, Sekhavati MH, Javadmanesh A, Ahmadian M, et al. Intestinal changes and immune responses during Clostridium perfringens-induced necrotic enteritis in broiler chickens. Poult Sci. 2022;101:101652.

Article  CAS  PubMed  Google Scholar 

Lin JD, Devlin JC, Yeung F, McCauley C, Leung JM, Chen YH, et al. Rewilding Nod2 and Atg16l1 mutant mice uncovers genetic and environmental contributions to microbial responses and immune cell composition. Cell Host Microbe. 2020;27:830–40e4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakayama J, Kobayashi T, Tanaka S, Korenori Y, Tateyama A, Sakamoto N, et al. Aberrant structures of fecal bacterial community in allergic infants profiled by 16S rRNA gene pyrosequencing. FEMS Immunol Med Microbiol. 2011;63:397–406.

Article  CAS  PubMed  Google Scholar 

Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107:129–34.

Article  PubMed  Google Scholar 

Smehilová M, Vlková E, Nevoral J, Flajsmanová K, Killer J, Rada V. Comparison of intestinal microflora in healthy infants and infants with allergic colitis. Folia Microbiol (Praha). 2008;53:255–8.

Article  PubMed  Google Scholar 

Roessler A, Forssten SD, Glei M, Ouwehand AC, Jahreis G. The effect of probiotics on faecal microbiota and genotoxic activity of faecal water in patients with atopic dermatitis: a randomized, placebo-controlled study. Clin Nutr. 2012;31:22–9.

Article  CAS  PubMed  Google Scholar 

Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 2018;53:5–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrison B, Raju D, Garmory HS, Brett MM, Titball RW, Sarker MR. Molecular characterization of Clostridium perfringens isolates from humans with sporadic diarrhea: evidence for transcriptional regulation of the beta2-toxin-encoding gene. Appl Environ Microbiol. 2005;71:8362–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif