Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review

Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95. https://doi.org/10.1016/j.cell.2005.02.001.

Article  PubMed  CAS  Google Scholar 

Zullo A, Guida R, Sciarrillo R, Mancini FP. Redox homeostasis in cardiovascular disease: the role of mitochondrial sirtuins. Front Endocrinol (Lausanne). 2022;13:858330. https://doi.org/10.3389/fendo.2022.858330.

Article  PubMed  PubMed Central  Google Scholar 

Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349–61. https://doi.org/10.1038/nri3423.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62. https://doi.org/10.1016/j.cub.2014.03.034.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sha Y, Marshall HE. S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta. 2012;1820(6):701–11. https://doi.org/10.1016/j.bbagen.2011.05.008.

Article  PubMed  CAS  Google Scholar 

Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. The Nitration of proteins, lipids and DNA by peroxynitrite derivatives-chemistry involved and biological relevance. Stresses. 2022;2(1):53–64.

Article  Google Scholar 

Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells and Development. 2015;24(10):1150–63. https://doi.org/10.1089/scd.2014.0484.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Riegger J, Palm HG, Brenner RE. The functional role of chondrogenic stem/progenito R cells: novel evidence for immunomodulatory properties and regenerative potential after cartilage injury. Eur Cell Mater. 2018;36:110–27. https://doi.org/10.22203/eCM.v036a09.

Article  PubMed  CAS  Google Scholar 

Schoppa AM, Chen X, Ramge JM, Vikman A, Fischer V, Haffner-Luntzer M, et al. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis Model Mech. 2022. https://doi.org/10.1242/dmm.049392.

Article  PubMed  PubMed Central  Google Scholar 

Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6(2):466–88. https://doi.org/10.3390/nu6020466.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zahan OM, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. 2020;93(1):12–22. https://doi.org/10.15386/mpr-1422.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–28. https://doi.org/10.1083/jcb.201708007.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fridovich I. Superoxide anion radical (O2-), superoxide dismutases, and related matters. J Biol Chem. 1997;272(30):18515–7. https://doi.org/10.1074/jbc.272.30.18515.

Article  PubMed  CAS  Google Scholar 

Bombicino SS, Iglesias DE, Rukavina-Mikusic IA, Buchholz B, Gelpi RJ, Boveris A, et al. Hydrogen peroxide, nitric oxide and ATP are molecules involved in cardiac mitochondrial biogenesis in Diabetes. Free Radical Biol Med. 2017;112:267–76. https://doi.org/10.1016/j.freeradbiomed.2017.07.027.

Article  CAS  Google Scholar 

Palma FR, He CX, Danes JM, Paviani V, Coelho DR, Gantner BN, et al. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxid Redox Sign. 2020;32(10):701–14. https://doi.org/10.1089/ars.2019.7962.

Article  CAS  Google Scholar 

Velarde MC, Flynn JM, Day NU, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging-Us. 2012;4(1):3–12. https://doi.org/10.18632/aging.100423.

Article  CAS  Google Scholar 

Li YB, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson TL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide-dismutase. Nat Genet. 1995;11(4):376–81. https://doi.org/10.1038/ng1295-376.

Article  PubMed  CAS  Google Scholar 

Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A. 1996;93(18):9782–7. https://doi.org/10.1073/pnas.93.18.9782.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Izuo N, Nojiri H, Uchiyama S, Noda Y, Kawakami S, Kojima S, et al. Brain-specific superoxide dismutase 2 deficiency causes perinatal death with spongiform encephalopathy in mice. Oxid Med Cell Longev. 2015. https://doi.org/10.1155/2015/238914.

Article  PubMed  PubMed Central  Google Scholar 

Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3–4):145–55. https://doi.org/10.1016/S0753-3322(03)00043-X.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li Q, Cheng JC, Jiang Q, Lee WY. Role of sirtuins in bone biology: potential implications for novel therapeutic strategies for osteoporosis. Aging Cell. 2021;20(2):e13301. https://doi.org/10.1111/acel.13301.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun KB, Wu YA, Zeng Y, Xu JW, Wu LM, Li MY, et al. The role of the sirtuin family in cartilage and osteoarthritis: molecular mechanisms and therapeutic targets. Arthritis Res Ther. 2022. https://doi.org/10.1186/s13075-022-02983-8.

Article  PubMed  PubMed Central  Google Scholar 

Wang CZ, Yang Y, Zhang YQ, Liu JY, Yao ZJ, Zhang C. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy- in primary chondrocytes. Biosci Trends. 2018;12(6):605–12. https://doi.org/10.5582/bst.2018.01263.

Article  PubMed  CAS  Google Scholar 

Takayama K, Ishida K, Matsushita T, Fujita N, Hayashi S, Sasaki K, et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum. 2009;60(9):2731–40. https://doi.org/10.1002/art.24864.

Article  PubMed  CAS  Google Scholar 

Ma ZX, Xu H, Xiang W, Qi J, Xu YY, Zhao ZG. Deacetylation of FOXO4 by Sirt1 stabilizes chondrocyte extracellular matrix upon activating SOX9. Eur Rev Med Pharmaco. 2021;25(2):626–35. https://doi.org/10.26355/eurrev_202101_24621.

Article  Google Scholar 

Dai Y, Liu S, Li J, Li J, Lan Y, Nie H, et al. SIRT4 suppresses the inflammatory response and oxidative stress in osteoarthritis. Am J Transl Res. 2020;12(5):1965–75.

PubMed  PubMed Central  CAS  Google Scholar 

Nagai K, Matsushita T, Matsuzaki T, Takayama K, Matsumoto T, Kuroda R, et al. Depletion of SIRT6 causes cellular senescence, DNA damage, and telomere dysfunction in human chondrocytes. Osteoarthr Cartilage. 2015;23(8):1412–20. https://doi.org/10.1016/j.joca.2015.03.024.

Article  CAS  Google Scholar 

Gu X, Wang Z, Gao J, Han D, Zhang L, Chen P, et al. SIRT1 suppresses p53-dependent apoptosis by modulation of p21 in osteoblast-like MC3T3-E1 cells exposed to fluoride. Toxicol In Vitro. 2019;57:28–38. https://doi.org/10.1016/j.tiv.2019.02.006.

Article  PubMed  CAS  Google Scholar 

Zainabadi K, Liu CJ, Caldwell ALM, Guarente L. SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis. PLoS ONE. 2017;12(9):e0185236. https://doi.org/10.1371/journal.pone.0185236.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang FS, Kuo CW, Ko JY, Chen YS, Wang SY, Ke HJ, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants (Basel). 2020. https://doi.org/10.3390/antiox9090810.

Article  PubMed  PubMed Central  Google Scholar 

Yang XH, Jiang TL, Wang Y, Guo L. The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats. Sci Rep-Uk. 2019. https://doi.org/10.1038/s41598-019-44766-3.

Article  Google Scholar 

Guo Y, Jia X, Cui Y, Song Y, Wang S, Geng Y, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol. 2021;41:101915. https://doi.org/10.1016/j.redox.2021.101915.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ahn BH, Kim HS, Song SW, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 2008;105(38):14447–52. https://doi.org/10.1073/pnas.0803790105.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif