SGLT2 inhibitors prevent LPS-induced M1 macrophage polarization and alleviate inflammatory bowel disease by downregulating NHE1 expression

Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS−) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan X, Zhu Q, Pan L-L, Sun J. Macrophage immunometabolism in inflammatory bowel diseases: from pathogenesis to therapy. Pharmacol Ther. 2022;238: 108176. https://doi.org/10.1016/j.pharmthera.2022.108176.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review). Mol Med Rep. 2018;18(4):3547–54. https://doi.org/10.3892/mmr.2018.9375.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai D, Zhao Y, Zhu Q, Zhou Y, Zhao Y, Zhang T, et al. LZ205, a newly synthesized flavonoid compound, exerts anti-inflammatory effect by inhibiting M1 macrophage polarization through regulating PI3K/AKT/mTOR signaling pathway. Exp Cell Res. 2018;364(1):84–94. https://doi.org/10.1016/j.yexcr.2018.01.033.

Article  CAS  PubMed  Google Scholar 

Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198(3):1006–14. https://doi.org/10.4049/jimmunol.1601515.

Article  CAS  PubMed  Google Scholar 

Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 2013;4(1):2834. https://doi.org/10.1038/ncomms3834.

Article  CAS  PubMed  Google Scholar 

Covarrubias AJ, Aksoylar HI, Horng T. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol. 2015;27(4):286–96. https://doi.org/10.1016/j.smim.2015.08.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YJ, Lee S, Jin J, Woo H, Choi Y-K, Park K-G. Cassiaside C inhibits M1 polarization of macrophages by downregulating glycolysis. Int J Mol Sci. 2022;23(3):1696.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vallés PG, Bocanegra V, Gil Lorenzo A, Costantino VV. Physiological functions and regulation of the Na+/H+ exchanger [NHE1] in renal tubule epithelial cells. Kidney Blood Press Res. 2015;40(5):452–66. https://doi.org/10.1159/000368521.

Article  CAS  PubMed  Google Scholar 

Allen DG, Xiao XH. Role of the cardiac Na+/H+ exchanger during ischemia and reperfusion. Cardiovasc Res. 2003;57(4):934–41. https://doi.org/10.1016/s0008-6363(02)00836-2.

Article  CAS  PubMed  Google Scholar 

Yi YH, Ho PY, Chen TW, Lin WJ, Gukassyan V, Tsai TH, et al. Membrane targeting and coupling of NHE1-integrinalphaIIbbeta3-NCX1 by lipid rafts following integrin-ligand interactions trigger Ca2+ oscillations. J Biol Chem. 2009;284(6):3855–64. https://doi.org/10.1074/jbc.M804334200.

Article  CAS  PubMed  Google Scholar 

Ioannou P, Burki U, Laval S, Schaefer S, Straub V. NHE1 inhibition as a potential therapeutic strategy to attenuate DMD pathology. Neuromuscul Disord. 2015;25:S291–2.

Article  Google Scholar 

Song H, Yuan S, Zhang Z, Zhang J, Zhang P, Cao J, et al. Sodium/hydrogen exchanger 1 participates in early brain injury after subarachnoid hemorrhage both in vivo and in vitro via promoting neuronal apoptosis. Cell Transplant. 2019;28(8):985–1001. https://doi.org/10.1177/0963689719834873.

Article  PubMed  PubMed Central  Google Scholar 

Xu J, Ji B, Wen G, Yang Y, Jin H, Liu X, et al. Na+/H+ exchanger 1, Na+/Ca2+ exchanger 1 and calmodulin complex regulates interleukin 6-mediated cellular behavior of human hepatocellular carcinoma. Carcinogenesis. 2016;37(3):290–300. https://doi.org/10.1093/carcin/bgw004.

Article  CAS  PubMed  Google Scholar 

Xu J, Ji B, Wen G, Yang Y, Jin H, Liu X, et al. Na + /H + exchanger 1, Na + /Ca 2+ exchanger 1 and calmodulin complex regulates interleukin 6-mediated cellular behavior of human hepatocellular carcinoma. Carcinogenesis. 2016;37(3):290–300. https://doi.org/10.1093/carcin/bgw004.

Article  CAS  PubMed  Google Scholar 

Shi Y, Yuan H, Kim D, Chanana V, Baba A, Matsuda T, et al. Stimulation of Na+/H+ exchanger isoform 1 promotes microglial migration. PLoS One. 2013;8(8): e74201. https://doi.org/10.1371/journal.pone.0074201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu C-L, Zhang X, Liu J, Wang Y, Sukhova GK, Wojtkiewicz GR, et al. Na+-H+ exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nat Commun. 2019;10(1):1–14.

Google Scholar 

Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, Pigott VM, et al. Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death Dis. 2018;9(10):1–16.

Article  Google Scholar 

Rotstein OD, Houston K, Grinstein S. Control of cytoplasmic pH by Na+/H+ exchange in rat peritoneal macrophages activated with phorbol ester. FEBS Lett. 1987;215(2):223–7.

Article  CAS  PubMed  Google Scholar 

Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Dev Ther. 2014;8:1335.

Article  Google Scholar 

Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Therapy. 2014;5(2):355–66. https://doi.org/10.1007/s13300-014-0089-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim NH, Kim NH. Renoprotective mechanism of sodium-glucose cotransporter 2 inhibitors: focusing on renal hemodynamics. Diabetes Metab J. 2022;46(4):543–51. https://doi.org/10.4093/dmj.2022.0209.

Article  PubMed  PubMed Central  Google Scholar 

Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021;107(13):1032–8. https://doi.org/10.1136/heartjnl-2020-318060.

Article  CAS  PubMed  Google Scholar 

Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19(1):62. https://doi.org/10.1186/s12933-020-01041-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu YW, Que JQ, Liu S, Huang KY, Qian L, Weng YB, et al. Sodium-glucose co-transporter-2 inhibitor of dapagliflozin attenuates myocardial ischemia/reperfusion injury by limiting NLRP3 inflammasome activation and modulating autophagy. Front Cardiovasc Med. 2021;8: 768214. https://doi.org/10.3389/fcvm.2021.768214.

Article  CAS  PubMed  Google Scholar 

Chen S, Coronel R, Hollmann MW, Weber NC, Zuurbier CJ. Direct cardiac effects of SGLT2 inhibitors. Cardiovasc Diabetol. 2022;21(1):45. https://doi.org/10.1186/s12933-022-01480-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung YJ, Park KC, Tokar S, Eykyn TR, Fuller W, Pavlovic D, et al. Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovasc Res. 2021;117(14):2794–806. https://doi.org/10.1093/cvr/cvaa323.

Article  CAS  PubMed  Google Scholar 

Han X, Ding S, Jiang H, Liu G. Roles of macrophages in the development and treatment of gut inflammation. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.625423.

Article  PubMed  PubMed Central  Google Scholar 

Magalhães D, Cabral JM, Soaresda-Silva P, Magro F. Role of epithelial ion transports in inflammatory bowel disease. Am J Physiol-Gastrointest Liver Physiol. 2016;310(7):G460–76. https://doi.org/10.1152/ajpgi.00369.2015.

Article  PubMed  Google Scholar 

Hyam SR, Lee I-A, Gu W, Kim K-A, Jeong J-J, Jang S-E, et al. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur J Pharmacol. 2013;708(1):21–9. https://doi.org/10.1016/j.ejphar.2013.01.014.

Article  CAS  PubMed  Google Scholar 

Cavet ME, Akhter S, de Medina FS, Donowitz M, Tse CM. Na(+)/H(+) exchangers (NHE1-3) have similar turnover numbers but different percentages on the cell surface. Am J Physiol. 1999;277(6):C1111–21. https://doi.org/10.1152/ajpcell.1999.277.6.C1111.

Article  CAS  PubMed  Google Scholar 

Cui G-M, Zhao Y-X, Zhang N-N, Liu Z-S, Sun W-C, Peng Q-S. Amiloride attenuates lipopolysaccharide-accelerated atherosclerosis via inhibition of NHE1-dependent endothelial cell apoptosis. Acta Pharmacol Sin. 2013;34(2):231–8. https://doi.org/10.1038/aps.2012.155.

Article  CAS  PubMed  Google Scholar 

Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC, Hollmann MW, et al. Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients. Front Physiol. 2018;9:1575. https://doi.org/10.3389/fphys.2018.01575.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif