RNA-Binding Proteins: A Role in Neurotoxicity?

Adeli K (2011) Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metabol 301 (6). https://doi.org/10.1152/ajpendo.00399.2011

Afroz T, Cienikova Z, Cléry A, Allain FHT (2015) One, two, three, four! How multiple RRMs read the genome sequence. Methods Enzymol 558(1):235–278. https://doi.org/10.1016/bs.mie.2015.01.015

Article  PubMed  CAS  Google Scholar 

Ainsley JA, Drane L, Jacobs J, Kittelberger KA, Reijmers LG (2014) Functionally diverse dendritic mRNAs rapidly associate with ribosomes following a novel experience,” (in eng). Nat Commun 5:4510

Alves LR (2016) RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem 7(1):78–78. https://doi.org/10.4331/wjbc.v7.i1.78

Article  PubMed  PubMed Central  Google Scholar 

Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10(6):430–436. https://doi.org/10.1038/nrm2694

Article  PubMed  CAS  Google Scholar 

Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms 1849(7):861–870. https://doi.org/10.1016/j.bbagrm.2014.11.009

Article  CAS  Google Scholar 

Apicco DJ et al (2018) Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci 21(1):72–82. https://doi.org/10.1038/s41593-017-0022-z

Article  PubMed  CAS  Google Scholar 

Armstrong RA, Carter D, Cairns NJ (2012) A quantitative study of the neuropathology of 32 sporadic and familial cases of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Neuropathol Appl Neurobiol 38(1):25–38. https://doi.org/10.1111/j.1365-2990.2011.01188.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ash PEA et al (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19(16):3206–3218. https://doi.org/10.1093/hmg/ddq230

Article  PubMed  PubMed Central  CAS  Google Scholar 

Attar N (2014) The RBPome: Where the brains meet the brawn. Genome Biol 15(1):1–5. https://doi.org/10.1186/gb4153

Article  Google Scholar 

Bampton A, Gittings LM, Fratta P, Lashley T, Gatt A (2020) The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 140(5):599–623. https://doi.org/10.1007/s00401-020-02203-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Banerjee A, Apponi LH, Pavlath GK, Corbett AH (2013) PABPN1: Molecular function and muscle disease. FEBS J 280(17):4230–4250. https://doi.org/10.1111/febs.12294

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barraud P, Allain FH (2012) “ADAR proteins: double-stranded RNA and Z-DNA binding domains”, (in eng). Curr Top Microbiol Immunol 353:35–60. https://doi.org/10.1007/82_2011_145

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bartel DP, Xiang K (2021) The molecular basis of coupling between poly(A)-tail length and translational efficiency. bioRxiv 2021.01.18.427055

Batra R et al (2014) Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol Cell 56(2):311–322. https://doi.org/10.1016/j.molcel.2014.08.027

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beckmann BM, Castello A, Medenbach J (2016) The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Arch 468(6):1029–1040. https://doi.org/10.1007/s00424-016-1819-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Biswas J, Nunes L, Das S, Yoon YJ, Eliscovich C, Singer RH (2019) Zipcode binding protein 1 (ZBP1; IGF2BP1): a model for sequence specific RNA regulation. Cold Spring Harb Symp Quant Biol 84:1–10. https://doi.org/10.1101/sqb.2019.84.039396.Zipcode

Bondy-Chorney E et al (2016) Staufen1 regulates multiple alternative splicing events either positively or negatively in DM1 indicating its role as a disease modifier. PLoS Genet 12(1):1–22. https://doi.org/10.1371/journal.pgen.1005827

Article  CAS  Google Scholar 

Boo SH, Kim YK (2020) The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 52(3):400–408. https://doi.org/10.1038/s12276-020-0407-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brook M, Gray NK (2012) The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem Soc Trans 40(4):856–864. https://doi.org/10.1042/bst20120100

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bryant CD, Yazdani N (2016) RNA-binding proteins, neural development and the addictions. Genes Brain Behav 15(1):169–186. https://doi.org/10.1111/gbb.12273

Article  PubMed  CAS  Google Scholar 

Buchan JR, Parker R (2009) Eukaryotic stress granules : the ins and out of translation what are stress granules ? Mol Cell 36(6):932–932

Article  PubMed  PubMed Central  CAS  Google Scholar 

Buckanovich RJ, Posner JB, Darnell RB (1993) Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11(4):657–672. https://doi.org/10.1016/0896-6273(93)90077-5

Article  PubMed  CAS  Google Scholar 

Burd CG, Dreyfusst G (1994) Conserved structures. Science 265(5172):615–621

Article  PubMed  CAS  Google Scholar 

Calabretta S, Richard S (2015) Emerging Roles of Disordered Sequences in RNA-Binding Proteins. Trends Biochem Sci 40(11):662–672. https://doi.org/10.1016/j.tibs.2015.08.012

Article  PubMed  CAS  Google Scholar 

Cao X, Jin X, Liu B (2020) The involvement of stress granules in aging and aging-associated diseases. Aging Cell 19(4):1–20. https://doi.org/10.1111/acel.13136

Article  CAS  Google Scholar 

Celona B et al (2017) Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. Elife 6. https://doi.org/10.7554/eLife.19032

Chang KY, Ramos A (2005) The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J 272(9):2109–2117. https://doi.org/10.1111/j.1742-4658.2005.04652.x

Article  PubMed  CAS  Google Scholar 

Chao Y et al (2021) Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci 11(1):1–16. https://doi.org/10.1186/s13578-021-00581-w

Article  CAS  Google Scholar 

Chen Y, Varani G (2005) Protein families and RNA recognition. FEBS J 272(9):2088–2097. https://doi.org/10.1111/j.1742-4658.2005.04650.x

Article  PubMed  CAS  Google Scholar 

Cioni JM et al (2019) Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176(1–2):56-72.e15. https://doi.org/10.1016/j.cell.2018.11.030

Article  PubMed  PubMed Central  CAS  Google Scholar 

Darnell JC, Richter JD (2012) Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb Perspect Biol 4(8):1–17. https://doi.org/10.1101/cshperspect.a012344

Article  CAS  Google Scholar 

Das S, Singer RH, Yoon Y (2019) The travels of mRNAs in neurons: do they know where they are going?. Physiol Behav 57:110–116. https://doi.org/10.1016/j.conb.2019.01.016.The

De Conti L, Baralle M, Buratti E (2017) Neurodegeneration and RNA-binding proteins. Wiley Interdisciplinary Reviews: RNA 8(2):1–12. https://doi.org/10.1002/wrna.1394

Article  CAS  Google Scholar 

Decker CJ, Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4(9):1–16

Article  Google Scholar 

Deshaies JE et al (2018) TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain 141(5):1320–1333. https://doi.org/10.1093/brain/awy062

Article  PubMed  PubMed Central  Google Scholar 

Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ (2008) A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14(6):926–939. https://doi.org/10.1016/j.devcel.2008.04.003

Article  PubMed  PubMed Central  CAS  Google Scholar 

Duan Y et al (2019) PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res 29(3):233–247. https://doi.org/10.1038/s41422-019-0141-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Duszczyk M et al (2019) The solution structure of Dead End bound to AU-rich RNA reveals an unprecedented mode of tandem RRM-RNA recognition required for mRNA regulation. BioRxiv 572156–572156. https://doi.org/10.1101/572156

Ebstein SY, Yagudayeva I, Shneider NA (2019) Mutant TDP-43 causes early-stage dose-dependent motor neuron degeneration in a TARDBP knockin mouse model of ALS. Cell Rep 26(2):364-373.e4. https://doi.org/10.1016/j.celrep.2018.12.045

Article  PubMed 

留言 (0)

沒有登入
gif