Ahmadi A, De Toma I, Vilor-Tejedor N et al (2020) Transposable elements in brain health and disease. Ageing Res Rev 64:101153. https://doi.org/10.1016/j.arr.2020.101153
Article CAS PubMed Google Scholar
Alvarez-Fischer D, Fuchs J, Castagner F et al (2011) Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nat Neurosci 14:1260–1266. https://doi.org/10.1038/nn.2916
Article CAS PubMed Google Scholar
Aneichyk T, Hendriks WT, Yadav R et al (2018) Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172:897-909.e21. https://doi.org/10.1016/j.cell.2018.02.011
Article CAS PubMed PubMed Central Google Scholar
Arkhipova IR, Yushenova IA (2019) Giant transposons in eukaryotes: is bigger better? Genome Biol Evol 11:906–918. https://doi.org/10.1093/gbe/evz041
Article CAS PubMed PubMed Central Google Scholar
Arru G, Mameli G, Deiana GA et al (2018) Humoral immunity response to human endogenous retroviruses K/W differentiates between amyotrophic lateral sclerosis and other neurological diseases. Eur J Neurol 25:1076. https://doi.org/10.1111/ene.13648
Article CAS PubMed Google Scholar
Attig J, Agostini F, Gooding C et al (2018) Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing. Cell 174:1067-1081.e17. https://doi.org/10.1016/j.cell.2018.07.001
Article CAS PubMed PubMed Central Google Scholar
Belancio VP, Deininger PL, Roy-Engel AM (2009) LINE dancing in the human genome: transposable elements and disease. Genome Med 1:97. https://doi.org/10.1186/gm97
Article CAS PubMed PubMed Central Google Scholar
Bhat A, Ghatage T, Bhan S et al (2022) Role of transposable elements in genome stability: implications for health and disease. Int J Mol Sci 23:7802. https://doi.org/10.3390/ijms23147802
Article CAS PubMed PubMed Central Google Scholar
Blaudin de Thé F, Rekaik H, Peze‐Heidsieck E et al (2018) Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE‐1 repression. EMBO J 37. https://doi.org/10.15252/embj.201797374
Bollati V, Galimberti D, Pergoli L et al (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 25:1078–1083. https://doi.org/10.1016/j.bbi.2011.01.017
Article CAS PubMed PubMed Central Google Scholar
Britten RJ, Kohne DE (1968) Repeated Sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science (1979) 161:529–540. https://doi.org/10.1126/science.161.3841.529
Brocks D, Schmidt CR, Daskalakis M et al (2017) DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 49:1052–1060. https://doi.org/10.1038/ng.3889
Article CAS PubMed PubMed Central Google Scholar
Brouha B, Schustak J, Badge RM et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci 100:5280–5285. https://doi.org/10.1073/pnas.0831042100
Article ADS CAS PubMed PubMed Central Google Scholar
Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. In: Genome and disease. KARGER, Basel, pp 104–115
Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703. https://doi.org/10.1038/nrg2640
Article CAS PubMed PubMed Central Google Scholar
Dai L, Mahajan SD, Guo C et al (2014) Spectrum of central nervous system disorders in hospitalized HIV/AIDS patients (2009–2011) at a major HIV/AIDS referral center in Beijing, China. J Neurol Sci 342:88–92. https://doi.org/10.1016/j.jns.2014.04.031
De Cecco M, Criscione SW, Peckham EJ et al (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256. https://doi.org/10.1111/acel.12047
Article CAS PubMed Google Scholar
De Cecco M, Ito T, Petrashen AP et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78. https://doi.org/10.1038/s41586-018-0784-9
Article ADS CAS PubMed PubMed Central Google Scholar
de Koning APJ, Gu W, Castoe TA et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384. https://doi.org/10.1371/journal.pgen.1002384
Article CAS PubMed PubMed Central Google Scholar
Deininger P, Morales ME, White TB et al (2017) A comprehensive approach to expression of L1 loci. Nucleic Acids Res 45:e31–e31. https://doi.org/10.1093/nar/gkw1067
Article CAS PubMed Google Scholar
Dembny P, Newman AG, Singh M et al (2020) Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight 5. https://doi.org/10.1172/jci.insight.131093
Deniz Ö, Frost JM, Branco MR (2019) Regulation of transposable elements by DNA modifications. Nat Rev Genet 20:417–431. https://doi.org/10.1038/s41576-019-0106-6
Article CAS PubMed Google Scholar
Denli AM, Narvaiza I, Kerman BE et al (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163:583–593. https://doi.org/10.1016/j.cell.2015.09.025
Article CAS PubMed Google Scholar
Di Nardo AA, Fuchs J, Joshi RL et al (2018) The physiology of homeoprotein transduction. Physiol Rev 98:1943–1982. https://doi.org/10.1152/physrev.00018.2017
Article CAS PubMed Google Scholar
Douville R, Liu J, Rothstein J, Nath A (2011) Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 69:141–151. https://doi.org/10.1002/ana.22149
Eickbush TH, Malik HS (2007) Origins and evolution of retrotransposons. In: Mobile DNA II. Wiley, pp 1111–1144
El Hajjar J, Chatoo W, Hanna R et al (2019) Heterochromatic genome instability and neurodegeneration sharing similarities with Alzheimer’s disease in old Bmi1+/− mice. Sci Rep 9:594. https://doi.org/10.1038/s41598-018-37444-3
Article ADS CAS PubMed PubMed Central Google Scholar
Emanuele Bianchi V, Falcioni G (2016) Reactive oxygen species, health and longevity. AIMS Mol Sci 3:479–504. https://doi.org/10.3934/molsci.2016.4.479
Erwin JA, Paquola ACM, Singer T et al (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19:1583–1591. https://doi.org/10.1038/nn.4388
Article CAS PubMed PubMed Central Google Scholar
Evering TH, Marston JL, Gan L, Nixon DF (2023) Transposable elements and Alzheimer’s disease pathogenesis. Trends Neurosci 46:170–172. https://doi.org/10.1016/j.tins.2022.12.003
Article CAS PubMed Google Scholar
Feschotte C, Zhang X, Wessler SR (2007) Miniature inverted‐repeat transposable elements and their relationship to established DNA transposons. In: Mobile DNA II. Wiley, pp 1145–1158
Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107. https://doi.org/10.1016/0168-9525(89)90039-5
Article CAS PubMed Google Scholar
Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–118. https://doi.org/10.1016/j.cell.2015.02.020
Article CAS PubMed PubMed Central Google Scholar
Frost B, Hemberg M, Lewis J, Feany MB (2014) Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 17:357–366. https://doi.org/10.1038/nn.3639
Article CAS PubMed PubMed Central Google Scholar
Fuentes DR, Swigut T, Wysocka J (2018) Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife 7. https://doi.org/10.7554/eLife.35989
Garcia-Montojo M, Fathi S, Norato G et al (2021) Inhibition of HERV-K (HML-2) in amyotrophic lateral sclerosis patients on antiretroviral therapy. J Neurol Sci 423:117358. https://doi.org/10.1016/j.jns.2021.117358
Article CAS PubMed PubMed Central Google Scholar
Garson JA, Usher L, Al-Chalabi A et al (2019) Quantitative analysis of human endogenous retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis. Acta Neuropathol Commun 7:45. https://doi.org/10.1186/s40478-019-0698-2
Article CAS PubMed PubMed Central Google Scholar
Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393. https://doi.org/10.1016/j.jmb.2006.01.089
Article CAS PubMed PubMed Central Google Scholar
Gold J, Rowe DB, Kiernan MC et al (2019) Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotroph Lateral Scler Frontotemporal Degener 20:595–604. https://doi.org/10.1080/21678421.2019.1632899
Comments (0)