Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases

Ahmadi A, De Toma I, Vilor-Tejedor N et al (2020) Transposable elements in brain health and disease. Ageing Res Rev 64:101153. https://doi.org/10.1016/j.arr.2020.101153

Article  CAS  PubMed  Google Scholar 

Alvarez-Fischer D, Fuchs J, Castagner F et al (2011) Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nat Neurosci 14:1260–1266. https://doi.org/10.1038/nn.2916

Article  CAS  PubMed  Google Scholar 

Aneichyk T, Hendriks WT, Yadav R et al (2018) Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172:897-909.e21. https://doi.org/10.1016/j.cell.2018.02.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arkhipova IR, Yushenova IA (2019) Giant transposons in eukaryotes: is bigger better? Genome Biol Evol 11:906–918. https://doi.org/10.1093/gbe/evz041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arru G, Mameli G, Deiana GA et al (2018) Humoral immunity response to human endogenous retroviruses K/W differentiates between amyotrophic lateral sclerosis and other neurological diseases. Eur J Neurol 25:1076. https://doi.org/10.1111/ene.13648

Article  CAS  PubMed  Google Scholar 

Attig J, Agostini F, Gooding C et al (2018) Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing. Cell 174:1067-1081.e17. https://doi.org/10.1016/j.cell.2018.07.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belancio VP, Deininger PL, Roy-Engel AM (2009) LINE dancing in the human genome: transposable elements and disease. Genome Med 1:97. https://doi.org/10.1186/gm97

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhat A, Ghatage T, Bhan S et al (2022) Role of transposable elements in genome stability: implications for health and disease. Int J Mol Sci 23:7802. https://doi.org/10.3390/ijms23147802

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blaudin de Thé F, Rekaik H, Peze‐Heidsieck E et al (2018) Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE‐1 repression. EMBO J 37. https://doi.org/10.15252/embj.201797374

Bollati V, Galimberti D, Pergoli L et al (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 25:1078–1083. https://doi.org/10.1016/j.bbi.2011.01.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Britten RJ, Kohne DE (1968) Repeated Sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science (1979) 161:529–540. https://doi.org/10.1126/science.161.3841.529

Brocks D, Schmidt CR, Daskalakis M et al (2017) DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 49:1052–1060. https://doi.org/10.1038/ng.3889

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brouha B, Schustak J, Badge RM et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci 100:5280–5285. https://doi.org/10.1073/pnas.0831042100

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. In: Genome and disease. KARGER, Basel, pp 104–115

Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703. https://doi.org/10.1038/nrg2640

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai L, Mahajan SD, Guo C et al (2014) Spectrum of central nervous system disorders in hospitalized HIV/AIDS patients (2009–2011) at a major HIV/AIDS referral center in Beijing, China. J Neurol Sci 342:88–92. https://doi.org/10.1016/j.jns.2014.04.031

Article  PubMed  Google Scholar 

De Cecco M, Criscione SW, Peckham EJ et al (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256. https://doi.org/10.1111/acel.12047

Article  CAS  PubMed  Google Scholar 

De Cecco M, Ito T, Petrashen AP et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78. https://doi.org/10.1038/s41586-018-0784-9

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

de Koning APJ, Gu W, Castoe TA et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384. https://doi.org/10.1371/journal.pgen.1002384

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deininger P, Morales ME, White TB et al (2017) A comprehensive approach to expression of L1 loci. Nucleic Acids Res 45:e31–e31. https://doi.org/10.1093/nar/gkw1067

Article  CAS  PubMed  Google Scholar 

Dembny P, Newman AG, Singh M et al (2020) Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight 5. https://doi.org/10.1172/jci.insight.131093

Deniz Ö, Frost JM, Branco MR (2019) Regulation of transposable elements by DNA modifications. Nat Rev Genet 20:417–431. https://doi.org/10.1038/s41576-019-0106-6

Article  CAS  PubMed  Google Scholar 

Denli AM, Narvaiza I, Kerman BE et al (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163:583–593. https://doi.org/10.1016/j.cell.2015.09.025

Article  CAS  PubMed  Google Scholar 

Di Nardo AA, Fuchs J, Joshi RL et al (2018) The physiology of homeoprotein transduction. Physiol Rev 98:1943–1982. https://doi.org/10.1152/physrev.00018.2017

Article  CAS  PubMed  Google Scholar 

Douville R, Liu J, Rothstein J, Nath A (2011) Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 69:141–151. https://doi.org/10.1002/ana.22149

Eickbush TH, Malik HS (2007) Origins and evolution of retrotransposons. In: Mobile DNA II. Wiley, pp 1111–1144

El Hajjar J, Chatoo W, Hanna R et al (2019) Heterochromatic genome instability and neurodegeneration sharing similarities with Alzheimer’s disease in old Bmi1+/− mice. Sci Rep 9:594. https://doi.org/10.1038/s41598-018-37444-3

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Emanuele Bianchi V, Falcioni G (2016) Reactive oxygen species, health and longevity. AIMS Mol Sci 3:479–504. https://doi.org/10.3934/molsci.2016.4.479

Article  Google Scholar 

Erwin JA, Paquola ACM, Singer T et al (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19:1583–1591. https://doi.org/10.1038/nn.4388

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evering TH, Marston JL, Gan L, Nixon DF (2023) Transposable elements and Alzheimer’s disease pathogenesis. Trends Neurosci 46:170–172. https://doi.org/10.1016/j.tins.2022.12.003

Article  CAS  PubMed  Google Scholar 

Feschotte C, Zhang X, Wessler SR (2007) Miniature inverted‐repeat transposable elements and their relationship to established DNA transposons. In: Mobile DNA II. Wiley, pp 1145–1158

Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107. https://doi.org/10.1016/0168-9525(89)90039-5

Article  CAS  PubMed  Google Scholar 

Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–118. https://doi.org/10.1016/j.cell.2015.02.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frost B, Hemberg M, Lewis J, Feany MB (2014) Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 17:357–366. https://doi.org/10.1038/nn.3639

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuentes DR, Swigut T, Wysocka J (2018) Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife 7. https://doi.org/10.7554/eLife.35989

Garcia-Montojo M, Fathi S, Norato G et al (2021) Inhibition of HERV-K (HML-2) in amyotrophic lateral sclerosis patients on antiretroviral therapy. J Neurol Sci 423:117358. https://doi.org/10.1016/j.jns.2021.117358

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garson JA, Usher L, Al-Chalabi A et al (2019) Quantitative analysis of human endogenous retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis. Acta Neuropathol Commun 7:45. https://doi.org/10.1186/s40478-019-0698-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393. https://doi.org/10.1016/j.jmb.2006.01.089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gold J, Rowe DB, Kiernan MC et al (2019) Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotroph Lateral Scler Frontotemporal Degener 20:595–604. https://doi.org/10.1080/21678421.2019.1632899

留言 (0)

沒有登入
gif